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On Scientific Figures

Observation 1
Even though sketching ideas on paper is easy,
creating high-quality scientific figures can be
time-consuming and challenging.

Observation 2
Recreating existing figures that are stored in
low-level formats (JPG, PNG, PDF, SVG, …) which
do not preserve semantic information is equally
complex.
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Introducing DETIKZIFY

We introduce DETIKZIFY, a multimodal LLM that automatically synthesizes
scientific figures based on sketches and existing figures as semantics-
preserving TikZ graphics programs. We leverage TikZ because it is:

expressive can represent complex figures with few commands
versatile supports a wide range of figure types (and more)
popular most frequently discussed topic on TEX.SE
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Key Contributions

datasets We collect DATIKZV2 with over 360k TikZ graphics; SKETCHFIG
consisting of sketches paired with scientific figures; and
METAFIG, a meta-dataset of figures and associated metadata.

model We train DETIKZIFY on METAFIG, DATIKZV2, and synthetic
SKETCHFIG-like sketches, then demonstrate its performance.

inference We present an inference algorithm based one Monte Carlo Tree
Search (MCTS) that allows DETIKZIFY to iteratively refine (IR)
its outputs, improving performance without additional training.
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Iterative Refinement with MCTS

The algorithm iteratively builds a search tree and repeatedly runs simulations.
Each node’s state consists of n lines of TikZ code, and edges represent
possible continuations. Each simulation performs four steps:

(i) Selection: Select a path to a leaf node based on the scores of each node.
(ii) Rollout: Starting from the state of the leaf node, use DETIKZIFY as a

rollout policy and complete the code until an <eos> token is reached.
(iii) Expansion: Expand the search tree by appending nodes from the rollout.
(iv) Backpropagation: Use DETIKZIFY to evaluate the rollout and

backpropagate the reward score to each node until the root is reached.
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Evaluation

At first, humans rate GPT-4V outputs
higher than DETIKZIFY from -1 (bad) to 1
(good).
However, after applying IR with MCTS,
DETIKZIFY ranks highest. Further, IR
techniques do not work well with GPT-4.

With MCTS, DETIKZIFY consistently improves over
time, and even after 10 minutes does not appear
to converge.
Standard sampling does not lead to better scores
over time due to the absence of a feedback loop.
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Examples
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Interested? There’s more!

In our paper, we explore various building blocks of
DETIKZIFY and additional baselines. We assess efficiency,
code similarity, and image similarity through automatic
evaluation, and correlate them with humans. We also
examine the quality of synthetic sketches and show that
our models are unaffected by training data memorization.

Paper https://arxiv.org/abs/2405.15306
Code https://github.com/potamides/DeTikZify

Artifacts https://hf.co/collections/nllg/
detikzify-664460c521aa7c2880095a8b

Demo https://hf.co/spaces/nllg/DeTikZify
Group https://nl2g.github.io
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