

Advancing Cross-domain Discriminability in Continual Learning of Vision-Language Models

Yicheng Xu, Yuxin Chen, Jiahao Nie, Yusong Wang, Huiping Zhuang, Manabu Okumura

Institute of Science Tokyo (Tokyo Institute of Technology)

Pre-training & Continual Learning

"motorcycle front wheel"

"thumbnail for version as of 21 57 29 june 2010"

"file frankfurt airport skyline 2017 05 jpg"

"file london barge race 2 jpg"

"moustache seamless wallpaper design"

"st oswalds way and shops"

Streaming datasets of various domains

Static pre-trained dataset

Continual Learning of Vision-Language Model

Multi-Task Incremental Learning: models classify images from both seen and unseen domains based on the given domain-identities.

Cross-domain Task-Agnostic Incremental Learning:

models classify images from both seen and unseen domains without any domain-identity hint.

Class-Incremental Learning: models classify images within only previously encountered classes.

Motivation

NEURAL INFORMATION PROCESSING SYSTEMS

Challenges

- How to preserve the zero-shot ability of the pre-trained VLM?
- How to distinguish data from different newly learned domains?
- How to avoid forgetting on continually learned domains?

Solutions

- Freeze the pre-trained VLM.
- Cooperate primal & dual regression methods with non-linear projections.
- Extend the closed-form solutions of regression methods to an continual learning manner.

Both primal & dual regression methods can classify images into their respective domains accurately without domain identity hint.

Non-forgetting Solutions

Optimization target:

$$\underset{\mathbf{W}^{(n)}}{\operatorname{arg\,min}} \left\| \mathbf{Y}^{(1:n)} - \mathbf{\Phi}^{(1:n)} \mathbf{W}^{(n)} \right\|_F^2 + \lambda \left\| \mathbf{W}^{(n)} \right\|_F^2$$

Standard solutions

Ridge Regression:

$$\mathbf{W} = \left(\mathbf{\Phi}^{\top}\mathbf{\Phi} + \lambda \mathbf{I}\right)^{-1}\mathbf{\Phi}^{\top}\mathbf{Y}$$

Continual learning forms

Theorem 1 The parameter calculated by

$$\mathbf{W}^{(n)} = \begin{bmatrix} \mathbf{W}^{(n-1)} - \mathbf{M}_p^{(n)} \mathbf{\Phi}^{(n)\top} \mathbf{\Phi}^{(n)} \mathbf{W}^{(n-1)} & \mathbf{M}_p^{(n)} \mathbf{\Phi}^{(n)\top} \mathbf{Y}^{(n)} \end{bmatrix}$$

is an optimal solution to the optimization problem of joint training on all n domains in Eqn. 4, where $\mathbf{M}_p^{(n)}$ is obtained by

$$\mathbf{M}_p^{(n)} = \mathbf{M}_p^{(n-1)} - \mathbf{M}_p^{(n-1)} \mathbf{\Phi}^{(n)\top} \left(\mathbf{I} + \mathbf{\Phi}^{(n)} \mathbf{M}_p^{(n-1)} \mathbf{\Phi}^{(n)\top} \right)^{-1} \mathbf{\Phi}^{(n)} \mathbf{M}_p^{(n-1)}.$$

Theorem 2 The parameter calculated by

$oldsymbol{lpha}^{(n)} = \left(\mathbf{K}^{(n)} + \lambda \mathbf{I} ight)^{-1} \mathbf{C}^{(n)}$

is an optimal solution to the optimization problem of joint training on all n domains in Eqn. 4, where

$$\mathbf{K}^{(n)} = \begin{bmatrix} \mathbf{K}^{(n-1)} & \mathcal{K}\left(\mathbf{X}_e^{(n)}, \mathbf{M}_d^{(n-1)}\right)^\top \\ \mathcal{K}\left(\mathbf{X}_e^{(n)}, \mathbf{M}_d^{(n-1)}\right) & \mathcal{K}\left(\mathbf{X}_e^{(n)}, \mathbf{X}_e^{(n)}\right) \end{bmatrix}, \quad \mathbf{C}^{(n)} = \begin{bmatrix} \mathbf{C}^{(n-1)} & \mathbf{0} \\ \mathbf{0} & \mathbf{Y}^{(n)} \end{bmatrix},$$

and the memory matrix is given by $\mathbf{M}_d^{(n)} = \begin{bmatrix} \mathbf{M}_d^{(n-1)\top} & \mathbf{X}_e^{(n)\top} \end{bmatrix}^{\top}$.

Dual Ridge Regression:

$$\boldsymbol{\alpha} = \left(\mathbf{K} + \lambda \mathbf{I}\right)^{-1} \mathbf{Y}$$

Proposed Method: RAIL

Regression-based Analytic Incremental Learning

Train on streaming datasets based on aforementioned solutions.

Experiments

- Transfer: the extent to which the zero-shot ability is preserved.
- Last: the learner's adaptability to new domains.
- Average: the average accuracy of all learning steps across all domains.

		Aircraft Callectrol DTD Finos Fronter's Food of Milest Pets Car's Sun's Average									
	Š	× ×	110,	اے	Si of	5 .0	N 25	>		o^	\
Method	Aircraf	Caltel	DID	Furos	xI Flower	Foodic	JI MAIS	Rets	Cate	Sun397	Avorogo
Wiethou	ν.		•	•	•	•	Υ,	•		7	Average
Zero-shot	23.5	76.8	37.3	36.7	63.6	84.0	46.7	86.7	66.1	63.7	58.5
Fine-tune	39.6	93.3	68.2	89.2	95.4	85.5	95.1	84.4	77.4	72.4	80.1
Transfer											
LwF [6]	_	66.6	26.9	19.5	51.0	78.4	26.6	68.9	35.5	56.1	47.7
WiSE-FT [47]	_	70.1	31.9	25.3	56.3	79.8	29.9	74.9	45.6	56.8	52.3
iCaRL [7]	_	71.7	35.0	43.0	63.4	86.9	43.9	87.8	63.7	60.0	61.7
ZSCL [10]	_	73.3	32.6	36.8	62.1	83.8	42.1	83.6	56.5	60.2	59.0
MoE-Adapter [15]	_	71.0	34.9	19.2	63.0	86.6	20.0	87.2	63.7	58.6	56.0
Primal-RAIL	_	76.8	37.3	36.7	63.6	84.0	46.7	86.7	66.1	63.7	62.4
Dual-RAIL	_	76.8	37.3	36.7	63.6	84.0	46.7	86.7	66.1	63.7	62.4
Average											
LwF	24.7	79.7	38.3	36.9	63.9	81.0	36.5	71.9	42.7	56.7	53.2
WiSE-FT	27.1	76.5	40.9	31.3	68.7	81.6	31.4	74.7	51.7	58.4	54.2
iCaRL	25.4	72.1	37.5	51.6	65.1	87.1	59.1	88.0	63.7	60.1	61.0
ZSCL	36.0	75.0	40.7	40.5	71.0	85.3	46.3	83.3	60.7	61.5	60.0
MoE-Adapter	43.6	77.9	52.1	34.7	75.9	86.3	45.2	87.4	66.6	60.2	63.0
Primal-RAIL	42.4	89.8	55.7	68.5	84.0	83.3	65.3	85.8	67.9	64.5	70.7
Dual-RAIL	45.3	89.9	57.6	68.7	83.9	85.5	65.2	88.4	69.4	65.0	71.9
Last											
LwF	20.9	83.1	47.5	38.2	75.5	84.7	50.1	78.0	75.8	74.6	62.8
WiSE-FT	21.8	76.8	42.9	20.8	77.5	84.9	30.7	76.6	75.8	72.5	58.0
iCaRL	25.5	72.1	38.9	55.4	65.5	87.3	81.9	88.6	63.6	61.5	64.0
ZSCL	33.1	75.3	43.5	35.2	74.6	87.4	50.4	84.2	77.3	73.4	63.4
MoE-Adapter	43.2	78.7	57.6	32.8	79.4	86.0	86.7	87.8	78.2	74.2	70.5
Primal-RAIL	41.7	94.0	66.0	86.4	97.2	82.4	93.1	83.6	75.0	71.3	79.1
Dual-RAIL	45.3	94.2	69.0	87.0	97.2	87.2	93.0	92.4	82.5	76.3	82.4

Experiments

Accuracy (%) on five domains changes over all learning steps.

Speed Analysis

Model	Real time					
ZSCL	514m 40.163s					
Moe-Adapter	47m 2.319s					
Primal-RAIL	4m 0.071s					
Dual-RAIL	4m 13.200s					

- No reference dataset.
- Parameter efficiency.
- Closed-form solutions -> require only one epoch!

NEURAL INFORMATION

Github

Paper

Thanks for your watching!