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Introduction to Video Restoration

‘If you want to understand today, you have to search yesterday.’
— Pearl S. Buck

Video Restoration:

« Aims to improve low-quality videos affected by factors such as:

s Motion Blur <+ Weather s Noise

+ Camera Sensors or Acquisition Procedure.

Challenges:

1. Effective information fusion across multiple frames
2. Handling non-uniform motion between frames.



Limitations of Existing Methods

Representative of Parallel Methods

Parallel Methods

Process multiple frames simultaneously

Multiple branches for feature extraction and reconstruction of
each frame or set of frames

Mix features mid-process to improve context

High memory and computational cost

Recurrent Methods

Process frames sequentially

Some designs use auto-regression, feeding the output from the
previous timestep as input along with the current degraded frame
Lower memory use but prone to error accumulation

Slower training due to limited parallelization

Parallel Branches
s (I
| C—

Input Frames

time t+1

Parallel Branches

W ™\ [ ~
= ]
\— o Nt
) o
Feature = Reconstruction =
Extraction [N ©
Y [
g w
» °
= . :
) N—.
Feature b B
| A
el s Reconstruction 3
—_—— + — (=
—~
= )
=
 —— Y )

Information Propagation

Representative of Recurrent Methods

time t-1
%

time t

time t+1
. |3

| b
o

[ Feature Extraction ] [ Feature Extraction ] [ Feature Extraction ]

—
—*| Recurrent

Cell

pra—

Reconstruction

< Bi-Directional Propagation ->
—

F E———

Recurrent
Cell

Recurrent [—>
Cell

Reconstruction

l——
R

Reconstruction

%E!Hliﬁ|lll %!lilii'ill %!!iiii'lll
Restored Frames

Figure 1: Parallel vs Recurrent Methods.



Overview

TURTLE:

* A video restoration framework designed to improve compute efficiency and quality.

Key Features

Online Video Processing:

* TURTLE processes each frame independently within the encoder.

Truncated Causal History:

* Uses a limited set of past frames to save memory.

Causal History Model (CHM) :

* Models the trajectory by summarizing the evolving frames into history states.

» Borrows information from the history states to compensate the input frame for
motion and re-weights the entire trajectory to accentuate necessary
information.

Tasks:
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@(a) TURTLE’s Architecture
Figure 2: TURTLE Architecture.

* TURTLE achieves state-of-the-art results on seven restoration tasks, including

desnowing, deraining, super-resolution, and deblurring.
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Encoder: Figure 3: Causal History Model Visualized.
* Processes each frame independently, without relying on neighboring frames in the video.

Decoder:
* Uses aligned features from previously restored frames through the Causal History Model (CHM).

CHM Function:

« History Summarization: CHM extends the state-space modeling paradigm to video processing and
maintains an evolving state that summarizes the history of the frame.

« Motion Compensation: CHM aligns history states with the input frame through attention mechanism
limited to topk most similar regions in the history.

 Feature Re-weighting: Prioritizes relevant features over time by re-weighting the entire trajectory,
and the irrelevant information is suppressed.



Is CHM Necessary?

Degraded Frame

Ground Truth

Figure 4: Is CHM Necessary?



Technical Features - 1

Training View
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Parallelism Over GPUs
Figure 5: Stateless vs Stateful Configuration.

Configurable Mode:
e TURTLE can either be stateful or stateless.

Training:
* Intraining, TURTLE uses parallelism by dividing videos into clips, and minimizes recurrence.

Inference:
* Ininference, TURTLE resorts to stateful configuration and implicitly maintains the entire trajectory
to leverage longer temporal context for restoration.



Technical Features - 2

Memory Usage of Video Restoration Methods Inference Time of Video Restoration Methods
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o Figure 6: Run-Time and Memory Profile of TURTLE.
Efficiency:

 TURTLE reuses features from a limited set of previous frames, trading off compute for memory.
« Limits the motion compensation to topk most similar regions in the history.

Performance:
* Can process 1080p videos on a single consumer-grade 32 GB GPU, while many state-of-the-art
methods encounter Out-of-Memory errors.



Experiments .. .

Table 1: Night Video Deraining Results. Table 2: Video Desnowing Results.  Table 6: Blind Video Denoising Results. Quan-

titative results on blind video denoising task in

Method PSNRT SSIMt  Method PSNR?T SSIM?t terms of distortion metrics, PSNR and SSIM, on
= two datasets DAVIS [48], and Set8 [61].
FDM [22 23.49 0.7657  TransWeather [65] 23.11 0.8543
SnowFormer [12] 24.01 0.8939 DAVIS Set8
DOTHM 1] 1082 06406 oD ms) 22.95  0.8590 Methiods — — — —
WeatherDiff [43] 20.98 0.6697 0=30 0=50 06=30 o=50
RMED [75 16.18 0.6402 RDDNet [68] 22.97 0.8742
[75] : : EDVR [69] 1793 05790 VLNB[I] 33.73 3113 3174 29.24

DLF [74] 15.17 0.6307 BasicVSR [6] 22.46 0.8473 FastDVDNet [62] 34.04 31.86 31.60 29.42
HRIR [31] 16.83  0.6481  jeonVSR [6] 2235 0sisy DVDNet[sl] 3408 3185 3179 2056
MetaRain (Meta) [47) 2349 07171 BogicVSRaes[7] 2264  0s6is UDVDISS] - 3392 3L7T0 3201 20.89
MetaRain (Scrt) [47] 2221 0.6723  RVRT [33] e e

: 3 BSVD-32 [49] 34.46 32.25 31.71 29.62
NightRain [35] 26.73 0.8647  SVDNet [10] 25.06 0.9210  BSVD-64 [49] 3491 3272 3202 29.95
TURTLE 29.26 0.9250  TURTLE 26.02 0.9230 TURTLE 3448 3238 3222 3029

Table 3: Real-World Video
Deblurring.  Quantitative
results (PSNR, and SSIM)

Table 4: Synthetic Video De-
blurring Results. Quantita-
tive results (PSNR, and SSIM)

Table 5: Video Raindrop and Rain

Streak Removal.

Quantitative re- Table 7: 4x Video Super Resolution. Quantita

sults (PSNR, and SSIM) on the VRDS tive results on video super resolution task in term:

on the 3ms-24ms BSD on the GoPro dataset [4 1] com- dataset [71] comparing state-of-the-art of distortion metrics, PSNR and SSIM.
dataset [83] comparing state- paring state-of-the-art meth- methods.
of-the-art methods. ods.

Method PSNRT SSIMT Method PSNRT SSIM7T
Method PSNRtT SSIMtT  Method PSNRt SSIM?T S2VD (78] 18.95 0.6630 TDAN [63] 23.07 0.7492
STRCNN [24]  29.42  0.893  IFI-RNN [42] 31.05 09110  EDVR [69] 19.19  0.6363 EDVR [69] 23.51 0.7611
DBN [58] 31.21 0.922 ESTRNN [82] 31.07 0.9023 BasicVSR [6] 28.35 0.8990 BasicVSR [6] 23.38 0.7594
SRN [60] 28.92 0.882 EDVR [69] 31.54 0.9260 VRT [34] 27.77 0.8856 MANA [76] 23.15 0.7513
IFI-RNN [42] 30.89 0.917 TSP [44] 31.67 0.9280 TTVSR [37] 28.05 0.8998 TTVSR [37] 23.60 0.7686
STFAN [86] 29.47 0.872 GSTA [59] 32.10 0.9600 RVRT [33] 28.24 0.8857 P
CDVD-TSP [44] 31.58 0.926 FGST [36] 32.90 0.9610 RDDNet [68] 28.38 0.9096 gr\l/cs\l/zS%? (7] ggg(l) 8;2}2
PVDNet [57] 31.35 0.923 BasicVSR++ [7]  34.01 0.9520 BasicVSR++ [7]  29.75 0.9171 [67] % :
ESTRNN [83]  31.39  0.926  DSTNet [45] 34.16  0.9679  ViMPNet[71]  31.02  0.9283 EAVSR+ [67] 23.94  0.7726
TURTLE 3358 0954 TURTLE 3450 09720  TURTLE 32.01 0.9590 TURTLE 25.30 0.8272

Figure 7: TURTLE Results on Video Restoration Tasks



Visual Results -1

Degraded Frame Ground Truth DSTNet TURTLE

1

Figure 8: Synthetic Video Deblurring Results.

Ground Truth SVDNet

Figure 9: Video Desnowing Results.



Visual Results -2
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Figure 11: Real-World Restoration Results (videos taken from a free videos website)



Any Questions?

ghasemab@ualberta.ca / mjanjua@ualberta.ca

https://github.com/Ascend-Research/Turtle

https://kjanjua26.github.io/turtle
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