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Ⅰ. Introduction
• Multiple Instance Learning (MIL) 

• Learns from labels assigned to bags and performs predictions at both the bag and 
instance levels. 

• Ex) Video-Snippets, Review-Words, Image-Patch, Sliding window-Time point 

• Most research primarily focuses on enhancing prediction performance at the bag 
level, rather than the instance level.
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Ⅱ. Problem Setting
• Definition 4. PAC Learnability of Bag 

 

• Definition 5. PAC Learnability of Instance 

 

• Definition 6. If the MIL algorithm satisfies Condition 2, it is learnable for instances.


Condition 2. The Deep MIL algorithm  must exhibit equivalent PAC learnability for bags 
and instances: 

ℙS∼Dm
XY

[ |Rbag(A(S)) − inf
h∈ℋbag

Rbag(h) | ≤ ϵ] ≥ 1 − δ

ℙSinsti∼Dm
XinstiY

[ |Rinsti(A(Sinsti)) − inf
h∈ℋinsti

Rinsti(h) | ≤ ϵ] ≥ 1 − δ

A

ℙ [ |Rbag(A(S)) − inf
h∈ℋbag

Rbag(h) | ≤ ϵ ∧
n

⋂
i=1

|Rinsti(A(Sinsti)) − inf
h∈ℋinsti

Rinsti(h) | ≤ ϵ] ≥ 1 − δ
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Ⅱ. Problem Setting
• Theorem 1. If MIL algorithm  satisfies Condition 1, then this algorithm is not PAC 

learnable for any instance domain space  and instance hypothesis space 
. 

 

• Condition 1. The MIL algorithm  is not PAC learnable for the given domain space  
and bag hypothesis space : 

 

• Assumption 1. The MIL algorithm is PAC learnable for bags.

A
𝒟XinstiY

ℋinsti ⊂ {hinsti : X → Y}

ℙ [
n

⋃
i=1

|Rinsti(A(Sinsti)) − inf
h∈ℋinsti

Rinsti(h) | > ϵ] > δ

A 𝒟XY
ℋbag ⊂ {hbag : X → Y}

ℙ [ |Rbag(A(S)) − inf
h∈ℋbag

Rbag(h) | > ϵ] > δ
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Ⅲ. Proposed Theoretical Framework
Ⅲ.Ⅰ. Summary of Framework
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Ⅲ. Proposed Theoretical Framework
Ⅲ.Ⅰ. Summary of Framework
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Ⅲ. Proposed Theoretical Framework
Ⅲ.Ⅱ. PAC Learnability for Independent Bag Domain Spaces

• Definition 7. Independent Bag Domain Space ( ) 

 

• Theorem 2. If a MIL algorithm satisfies Condition 4 in , it is learnable for instances. 

Condition 4. The risk of the optimal hypothesis for  must ensure that it equals the 
sum of the individual risks of the optimal hypotheses within : 

𝒟Ind
XY

DInd
XY :=

N

⋃
i=1

DXinstiY
∈ 𝒟Ind

XY

𝒟Ind
XY

DInd
XY

DInd
XY
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h∈ℋ

R𝒟Ind
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=
N

∑
i=1

inf Rinsti
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Ⅲ. Proposed Theoretical Framework
Ⅲ.Ⅲ. PAC Learnability for General Bag Domain Spaces

• Definition 8. General Bag Domain Space ( ) 

 

• Theorem 3. If a MIL algorithm satisfies Condition 7 in , it is learnable for instances. 

Condition 7. The risk of the optimal hypothesis for  must ensure that it equals the 
weighted sum of the individual risks of the optimal hypotheses within : 

𝒟Ind
XY ∪ 𝒟Dep

XY = 𝒟Gen
XY

DGen
XY =

N

∑
i=1

αiDXinstiY
∈ 𝒟Gen

XY such that
N

∑
i=1

αi = 1, 0 ≤ αi ≤ 1

𝒟Gen
XY

DGen
XY

DGen
XY

inf
h∈ℋ

R𝒟Gen
XY

=
N

∑
i=1

αi inf Rinsti such that
N

∑
i=1

αi = 1, 0 ≤ αi ≤ 1
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Ⅳ. Theoretical Verification of Existing Deep MILs
Ⅳ.Ⅰ. Classifications of Existing Deep MIL Methodologies

• Aggregation-level 

• At which stage are the values of individual instances aggregated? 

• Attention-Target 

• At which stage are attention weights applied to the instances?

Instance 
-Pooling

Embedding 
-Pooling

Attention 
-Pooling

Additive 
-Pooling

Conjunctive 
-Pooling

Aggregation-level Instance Embedding Embedding Instance Instance
Attention-target None None Embedding Embedding Instance
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Table 4: Classification of existing Deep MIL methodologies



Ⅳ. Theoretical Verification of Existing Deep MILs
Ⅳ.Ⅱ. Verification Learnability for Instances by MIL Pooling Method

• Lemma 1. Condition 9 serves as a necessary condition for the learnability of 
instances, when the hypothesis space for the  instance of a MIL algorithm is 

. 

• Condition 9.  must be a subset of : 

 

• Theorem 6. In , MIL algorithms that perform instance-pooling are PAC learnable 
for instances. 

• Theorem 7. MIL algorithms that perform Embedding-Pooling are not learnable for 
instances.

ith

ℋinsti ∪ ℋaddi

ℋaddi
ℋinsti

ℋinsti ⊃ ℋaddi
:= {haddi

: 𝒳addi
→ 𝒴}

𝒟Ind
XY
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Ⅳ. Theoretical Verification of Existing Deep MILs
Ⅳ.Ⅱ. Verification Learnability for Instances by MIL Pooling Method

• Theorem 8. If the MIL algorithm does not adhere to Condition 10, it is not learnable 
for instances. 

• Condition 10. The risk  for the  instance should be as follows: 

 

• Attention-Pooling and Additive-Pooling is not learnable for Instances


• Theorem 9. When MIL algorithms use Conjunctive-Pooling for aggregation in , 
they are learnable for instances. 

Rinsti ith

Rinsti = 𝔼(xinsti,y)∼DXinstiY
ℓinsti(h, y) , where h ∈ ℋinsti ∪ ℋbag−leveli

𝒟Gen
XY
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Ⅳ. Theoretical Verification of Existing Deep MILs
Ⅳ.Ⅱ. Verification Learnability for Instances by MIL Pooling Method
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Macro-F1 Score Micro-F1 Score Weighted-F1 Score

Instance-Pooling
mi-Net 0.3286 0.5548 0.4550

Causal MIL 0.2341 0.3577 0.2645

MIREL 0.3623 0.5318 0.4372

Attention-Pooling

Attention MIL 0.7652 0.7683 0.7583
Loss-Attention 0.7935 0.7832 0.7753

SA-AbMILP 0.7540 0.7619 0.7562

TransMIL 0.7834 0.7711 0.7738

Additive-Pooling Additive MIL 0.5314 0.6341 0.5732

Conjunctive-Pooling Conjunctive MIL 0.7544 0.7701 0.7683

None-Pooling Fully Connected Layer 0.7704 0.7724 0.7714

Table 2: Prediction performance of Deep MIL on Bags in .DGen
XY



Ⅳ. Theoretical Verification of Existing Deep MILs
Ⅳ.Ⅱ. Verification Learnability for Instances by MIL Pooling Method
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Performance of Bags (PB) Performance of Instances (PI) PI - PB

Macro-F1 AUROC Macro-F1 AUROC Macro-F1 AUROC

Attention MIL 0.8434 0.9516 0.3215 0.7317 -0.5219 -0.2199

Loss-Attention 0.8228 0.9574 0.4797 0.7951 -0.3431 -0.1623

SA-AbMILP 0.7692 0.9552 0.3340 0.5464 -0.4352 -0.4088

TransMIL 0.8515 0.9622 0.2192 0.5369 -0.6323 -0.4253

Additive MIL 0.4776 0.9181 0.2320 0.8092 -0.2456 -0.1089

Conjunctive MIL 0.7916 0.9463 0.6430 0.9516 -0.1486 +0.0053

Table 3: Prediction performance comparison of MIL algorithms on bags and instances.



Ⅳ. Theoretical Verification of Existing Deep MILs
Ⅳ.Ⅲ.Ⅰ. Rethinking Position Dependencies of Instances on Deep MILs

• Theorem 10. If the MIL algorithm extracts features of instances through RNN-based 
neural networks for aggregation, it is unable to learn from instances. 

• Theorem 11. If the hypothesis space  generated through positional 
encoding values for the -th position of the MIL algorithm is not a subset of , 
then the algorithm is not PAC learnable for instances. 

ℋPos−Encodei

i ℋinsti

13

Default PE (All) PE (Att) PE (Predict) RNN (All) RNN (Att) RNN (Predict)
AOPCR 13.041 12.372 14.555 12.256 9.011 17.502 12.210

NDCG@n 0.676 0.665 0.727 0.642 0.620 0.714 0.523

Table 4: Test positional dependencies for WebTraffic datasets



• Multi-Dimensional(MD) MIL predicts multi-dimensional instances using a top-
level bag label. 

• MD-instances should consider relationships with other dimensions. 

• Conjunctive-Pooling, reflecting MD relationships through attention, showed 
the best performance.

Ⅳ. Theoretical Verification of Existing Deep MILs
Ⅳ.Ⅲ.Ⅱ. Instance Learnability for Multi-dimensional Deep MILs
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None-
Attention Attention Cross-

Attention

Snippet (Bag) 0.87 0.88 0.91

Patch 
(Instance) 0.85 0.85 0.91

Table 4: Predicted performance for Snippets (i.e., bags)  
and patches (i.e., instances) of MD-MIL.



Ⅴ. Conclusions
• This study proposes a theoretical framework that defines the necessary 

conditions for an MIL algorithm to achieve learnability at the instance level, 
assuming Assumption 1 is satisfied. 

• The framework is expected to benefit various domains where instance-level 
learnability is critical. 

• Although MIL is actively utilized in domains with limited labeling, such as 
medical applications, most research has focused on bag-level performance, 
primarily relying on Attention-Pooling methods. 

• Future theoretical and experimental validations regarding positional 
dependencies and MD-MIL are anticipated to support further advancements in 
MIL research.
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