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Prophet Inequality
Setting: Known probability distributions  

Realisations  observed sequentially 

If algorithm ALG stops at time , its payoff is  

                           

F1, …, Fn

X1 ∼ F1, …, Xn ∼ Fn

τ ∈ [n]

ALG(X1, …, Xn) = Xτ
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Prophet Inequality
Setting: Known probability distributions  

Realisations  observed sequentially 

If algorithm ALG stops at time , its payoff is  

                           

F1, …, Fn

X1 ∼ F1, …, Xn ∼ Fn

τ ∈ [n]

ALG(X1, …, Xn) = Xτ

Definition: The competitive ratio of ALG is 

CR(ALG) =     inf
F1,…,Fn

𝔼[ALG(X1, …, Xn)]
𝔼[max(X1, …, Xn)]

Theorem: The best possible competitive ratio is 1/2. 

ALG: Select the first value exceeding , with .θ ℙ(max(X1, …, Xn) ≥ θ) =
1
2
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Definition: Decay functions  
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•  

•   is  non-increasing 

•   is non-decreasing

∀i, x : Di(x) ∈ [0,x]

∀x : i ↦ Di(x)

∀i : x ↦ Di(x)



Lookback Prophet Inequality
Weakness: The model is too pessimistic,   

     rejections are often reversible in real-world scenarios

Definition: Decay functions  

  If ALG stops at time , its reward is 

     

𝒟 = (D1, D2, …)

τ

ALG𝒟(X1, …, Xn) = max(Xτ , D1(Xτ−1) , D2(Xτ−2), …)

Examples:  

•       (standard prophet inequality) 

• ,   with  

• ,    with    

•  ,    with    (our results extend to random functions)

Di(x) = 0

Di(x) = γix γ ∈ [0,1]

Di(x) = x − ci c1 ≤ c2 ≤ …

Di(x) ∼ ℬ(pi) ⋅ x p1 ≥ p2 ≥ …
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Theorem: Let , if  have support in , then for any algorithm ALG  

   

0 < a < b X1, …, Xn {0,a, b}

CRD∞(ALG) ≤
𝔼[ALGD∞(X1, …, Xn)]

𝔼[max(X1, …, Xn)]
≤ sup

A:algo

𝔼[Aγ(X1, …, Xn)]
𝔼[max(X1, …, Xn)]
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Consequence of the reduction

Upper bounds in the -prophet inequality, proved with random variables having 
a support in  remain true in the -prophet inequality
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Consequence of the reduction

Upper bounds in the -prophet inequality, proved with random variables having 
a support in  remain true in the -prophet inequality

γ
{0,a, b} 𝒟

Lower bounds in the -prophet inequality remain true in the -prophet inequality.         

                            ( )

γ 𝒟

Di(x) ≥ D∞(x) ≥ γx

Let γ𝒟 := inf
x>0

infi Di(x)
x

∈ [0,1]
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Upper bound: The competitive ratio of any algorithm in the -prophet 

inequality is at most   .

𝒟
1

2 − γ

Lower bound: Let ALG the algorithm that select the first value exceeding , 

with  , then  

                              .
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Main results 

Upper bound: The competitive ratio of any algorithm in the -prophet 

inequality is at most   .

𝒟
1

2 − γ

Lower bound: Let ALG the algorithm that select the first value exceeding , 

with  , then  

                              .

θ

ℙ(max(X1, …, Xn) ≥ θ) =
1

2 − γ

CR(ALG) =
1

2 − γ

Problem solved!

Let γ𝒟 := inf
x>0

infi Di(x)
x

∈ [0,1]
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Variants of the prophet inequality
Random order: (prophet secretary) The distributions  are 
adversarial, but the values are observed in a uniformly random order

F1, …, Fn

IID model: The distributions are identical F1 = … = Fn = F

Main results 

• The same reductions of the decay functions to  then   remain 
true in both models (but more technical) 

• Upper bounds: depending on  

• Lower bounds: single threshold algorithms

D∞(x) γx

γ
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Future work: in the random order and IID models 

• Improve the upper bounds 

• Analyse more general algorithms


