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Prophet Inequality

Setting: Known probability distributions Fy, ..., F,
Realisations X; ~ F, ..., X, ~ F, observed sequentially

If algorithm ALG stops at time 7 € [n], its payoff is

ALG(X|,...,X) = X,
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Prophet Inequality

Setting: Known probability distributions Fy, ..., F,
Realisations X; ~ F'|, ..., X ~ F, observed sequentially

If algorithm ALG stops at time 7 € [n], its payoff is

ALG(X|,...,X) = X,

Definition: The competitive ratio of ALG is

, E[ALG(X, ..., X))]
CR(ALG) = 1Inf
F.....F, Elmax(X, ..., X,)]

Theorem: The best possible competitive ratio is 1/2.

ALG: Select the first value exceeding 6, with P(max(X;, ...
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e Vx: i+ Dyx) is non-increasing

e Vi: Xxm D,(x) is non-decreasing



Lookback Prophet Inequality

Weakness: The model is too pessimistic,

rejections are often reversible in real-world scenarios

Definition: Decay functions & = (D, D,, ...)
If ALG stops at time 7, its reward is

ALGZ(X,, ..., X)) = max(X,, D;(X._)), D,(X,._,), ...)
Examples:
e D(x) =0 (standard prophet inequality)
e D(x) = y'x, withy € [0,1]
* D((x) =x—c¢;, with ¢;<¢c, <

* Di(x) ~ AB(p;) -x, with p; >p,> ... (ourresults extend to random functions)
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ALGZ(X,,...,X ) =max(X., D_(X._,), D_(X._,), ..., D_(X}))

= ALG"~(X,, ..., X )

n

—> In worst-case analysis, we can assume that D, = D__ foralli > 1
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Step 2: Reduction from D__(x) to yx

. . Dy(X)
D (x)=lmD(x) € [0x] = y:=int e [0,1]

[— 00 x>0 X

Notation:
e “/-Prophet inequality: ALG‘@(XI, X)) =max(X,, ) X,_), (X)), ...)
e ) _-Prophet inequality: ALGDOO(XI, LX) =max(X,,D_(X._)), D (X,_5),...)

e y-Prophet inequality: ALG’(X|,...,X ) = max(X,, yX_._,, yX, 5, ...)

Theorem: Let0 < a < b, if X{, ..., X have supportin {0,a, b}, then for any algorithm ALG

E[ALGP=(X,, ..., X,)] > E[A (X, ..., X)]

S
b E[max(X, ..., X,)]

CRP=(ALG) < < su
E[max(Xj, ..., X,)] A-al

go
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Consequence of the reduction

. 1Inf; D(x)
Let yg, 1= 1r>1£ » e [0,1]

Upper bounds in the y-prophet inequality, proved with random variables having

a supportin {0,a, b} remain true in the &-prophet inequality

Lower bounds in the y-prophet inequality remain true in the -prophet inequality.

(D;(x) = D (x) = yx)
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Main results
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Upper bound: The competitive ratio of any algorithm in the &-prophet
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Lower bound: Let ALG the algorithm that select the first value exceeding 6,

|
with P(max(X;,...,X ) > 0) = SR then
—7

1
CR(ALG) = —— .
2—y

Problem solved!
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Variants of the prophet inequality

Random order: (prophet secretary) The distributions I, ..., F, are

adversarial, but the values are observed in a uniformly random order

IID model: The distributions are identical F; = ... = F, = F

Main results

e The same reductions of the decay functions to D__(x) then yx remain

true in both models (but more technical)
e Upper bounds: depending on y

e Lower bounds: single threshold algorithms
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Future work: in the random order and IID models

* Improve the upper bounds

e Analyse more general algorithms

[Adversarial| lower and upper bound
[Random and IID] lower bound

[Random] upper bound

IID] upper bound
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