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Background
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Setting

1. Binary classification data (xl-, y; € {il})

’ =1
2. Logistic loss: L(w) := — Z ln(l + exp(—yl-f(w;xi)).
n -

l
3. Gradientdescent: w, ; =w,—nV, L(w,).




Stable phase and EoS phase

1.EoS Phase.

- Loss oscillates but has a decreasing trend.
2.Stable Phase.

- Loss monotonically decreases.

- The parameter norm increases.

- The parameter direction converges.

- The normalized margin,
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Increases and stays positive. 272 j
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A Theory for Non-homogeneous models
Stable phase

- Lipschitzness. ||V, f(w;x)|| <p.
- Smoothness. |W3Vf(w;x)H2 <p.
- Near-homogeneity. |(V,  f(w;x),w) — f(w;x)| < k.

If L(w,) < min{1/2e*t*n,1/(4p* + 2)n} for some s, then for t > s
- L(w,) = ©(1/¢) decreases;
- ||w,|| = ©(log ?) increases;
- 7(w,) stays positive and converges with a nearly increasing trend.



A Theory for Non-homogeneous models
EoS Phase

m
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C) — AD(xTw)
flows x) = — Za,qb(x w)
j=1
-Lipschitzness. a < ¢'(x) < 1.

- Near-homogeneity. |[¢d'(x)x — ¢p(x)| < k.
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Given a two-layer NN. For every f, — Z Liw,) <O :
t =0 nt



A Theory for Non-homogeneous models

Phase transition

For two-layer NNs, L(w,) < 1/ for
SR = @( maxic, CHon, cn/n ln(czn/n)})

Where ¢; = 2e*"*, ¢, = (4p* + 2) .

For two-layer NNs, if # = ©(T), then L(T) = O(1/T?).



Conclusion

We generalize the results for homogeneous models in [Lyu & Li 2020] to non-homogeneous models.
1.This includes I Smooth Leaky RelLU, GELU, SiLU, Huberized RelLU etc..

2.Even with the non-homogeneous model, we show the weak convergence of implicit bias.

We generalize the results for linear models in [Wu et al. 2024] to non-linear two-layer networks.
1.Asymptotic O(1/nt) for every 17
2.Given #steps T , if choose n = O(T), then

Tt < T/2 and L(w;) < O(1/T?)

3. Theorem. In general, if not enter EoS, then L(w;) > Q(1/T)
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