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Background

3-layer net + 1,000 samples from MNIST

-When training neural networks, large stepsize 
works better!


-“Spikes” or “Edge of Stability” unexplained by 
descent lemma.


-Implicit bias exists for non-linear non-
homogeneous models!



Setting

1. Binary classification data .


2. Logistic loss: .


3. Gradient descent: 

(xi, yi ∈ {±1})n
i=1

L(w) :=
1
n ∑

i

ln(1 + exp(−yi f(w; xi))
wt+1 = wt − η∇wL(wt) .



Stable phase and EoS phase
1.EoS Phase.  
 
  - Loss oscillates but has a decreasing trend.


2.Stable Phase. 
-  Loss monotonically decreases.

-  The parameter norm increases.

- The parameter direction converges.

- The normalized margin, 
 

, 

 
increases and stays positive. 
 

γ̄(w) =
mini∈[n] yi f(w; xi)

∥w∥M



A Theory for Non-homogeneous models
Stable phase

- Lipschitzness.   


- Smoothness.   


- Near-homogeneity.  

∥∇w f(w; x)∥ ≤ ρ .
∥∇2

w f(w; x)∥2 ≤ β .
|⟨∇w f(w; x), w⟩ − f(w; x) | ≤ κ .

Near-homogeneous Models

Theorem 2.2 (Stable phase) 

If  for some , then for 

-   decreases;

-  increases;

-  stays positive and converges with a nearly increasing trend.

L(ws) ≤ min{1/2eκ+2n,1/(4ρ2 + 2β)η} s t ≥ s
L(wt) = Θ(1/t)
∥wt∥ = Θ(log t)
γ̄(wt)



A Theory for Non-homogeneous models
EoS Phase




-Lipschitzness.   


- Near-homogeneity.  

f(w; x) =
1
m

m

∑
j=1

ajϕ(xTw( j))

α ≤ ϕ′￼(x) ≤ 1.
|ϕ′￼(x)x − ϕ(x) | ≤ κ .

Two-layer Networks

Theorem 3.2 (EoS phase) 

Given a two-layer NN. For every ,    t
1
t

t−1

∑
k=0

L(wk) ≤ Õ( 1 + η2

ηt ) .

Assume:  vector  

such that 

∃ w*
yx⊤w* > γ > 0



A Theory for Non-homogeneous models
Phase transition

For two-layer NNs,   for



Where 

L(ws) ≤ 1/η
s ≤ τ := Θ( max{c1η, c2n, c2n/η ln(c2n/η)})

c1 = 2eκ+2, c2 = (4ρ2 + 2β) .

Theorem 4.1 (Phase transition)

Corollary 4.2 (Fast optimization)

For two-layer NNs, if  then  η = Θ(T), L(T) = O(1/T2) .



Conclusion

We generalize the results for homogeneous models in [Lyu & Li 2020] to non-homogeneous models.

1.This includes a broad class of activation functions!  Smooth Leaky ReLU, GELU, SiLU, Huberized ReLU etc..

2.Even with the non-homogeneous model, we show the weak convergence of implicit bias.  

The normalized margin converges! 

Implicit bias with Near-homogeneity

Large stepsizes for non-linear model

We generalize the results for linear models in [Wu et al. 2024] to non-linear two-layer networks. 


1.Asymptotic  for every  (beyond 1/smoothness) 

2.Given #steps , if choose , then 


  and  


3. Theorem. In general, if not enter EoS, then 

Õ(1/ηt) η

T ≥ Ω(n) η = Θ(T)
τ ≤ T/2 L(wT) ≤ Õ(1/T2)

L(wT) ≥ Ω(1/T)
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