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⚫ Long-term Time Series Forecasting (LTSF) Tasks :

Historical two weeks 

(336 steps)

Predicted two weeks 

(336 steps)Forecasting

➢ Longer look-back windows are required for accurate predictions over

extending forecast horizon 

➢ Mainstream methods rely on stacking deep architectures to extract long-term 

dependencies from extended look-back windows, enabling more accurate 

modeling of periodic patterns
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⚫ Intuitions about Periodic Patterns:

➢ Stable periodic patterns present in time series data serve as the foundation for 

accurate long-horizon forecasts

➢ These periodic patterns in time series data can be directly represented through 

globally shared segments.
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➢ The proposed CycleNet (combined RCF with Linear/MLP) achieves state-of-the-art

performance with significant efficiency advantages.

⚫ Explicit modeling of periodicity:

➢ Pioneering explicit modeling of periodic patterns in sequences to enhance time 

series forecasting tasks.

⚫ Residual Cycle Forecasting (RCF) technique:

➢ Utilizing learnable recurrent cycles to explicitly model the inherent periodic 

patterns within time series data, followed by predicting the residual 

components of the modeled cycles.

⚫ CycleNet model:
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⚫ The core idea of RCF technique:

➢ Phase 1 (Periodic patterns modeling): Utilizing learnable recurrent cycles to 

explicitly model the inherent periodic patterns within time series data

➢ Phase 2 (Residual forecasting): Predicting the residual components of the 

modeled cycles.

Phase 1

Phase 2
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⚫ Phase 1 (Periodic patterns modeling):

➢ Generate learnable recurrent cycles 𝑄 ∈ ℝ𝑊×𝐷 and all initialized to zeros, where 𝑊 is 

the length of periodicity and 𝐷 is the number of channels.

➢ The learnable recurrent cycles 𝑄 will undergo gradient backpropagation training 

along with the backbone module for prediction, yielding learned representations.

Phase 1
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⚫ Phase 2 (Residual forecasting):

➢ (Step 1) Remove the cyclic components 𝑐𝑡−𝐿+1:𝑡 from the original input 𝑥𝑡−𝐿+1:𝑡

to obtain residual components 𝑥𝑡−𝐿+1:𝑡
′

Phase 2

Step 1
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⚫ Phase 2 (Residual forecasting):

➢ (Step 2) Pass 𝑥𝑡−𝐿+1:𝑡
′ through the backbone to obtain predictions for the 

residual components, ҧ𝑥𝑡+1:𝑡+𝐻
′

Phase 2

Step 2
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⚫ Phase 2 (Residual forecasting):

➢ (Step 3) Add the predicted residual components ҧ𝑥𝑡+1:𝑡+𝐻
′ to the cyclic 

components 𝑐𝑡+1:𝑡+𝐻 to obtain final prediction ҧ𝑥𝑡+1:𝑡+𝐻

Phase 2

Step 3
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⚫ Backbone for residual forecasting:

➢ Can be any existing time series forecasting model.

➢ Combining Linear or dual-layer MLP forms the proposed simple yet powerful 

methods, CycleNet.
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⚫ Generation of the cyclic components:

➢ Appropriate alignments and repetitions (according to relative positional 

index 𝑡 mod𝑊) of the recurrent cycles 𝑄 are needed to obtain equivalent 

cyclic components.
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⚫ Generation of the cyclic components:

➢ Step1: Left-shift 𝑄 by 𝑡 mod𝑊 positions to obtain 𝑄(𝑡). Here, 𝑡 mod𝑊 can be 

viewed as the relative positional index of the current sequence sample within 𝑄.

➢ Step2: Repeat 𝑄(𝑡) ⌊𝐿/𝑊⌋ times and concatenate 𝑄0 ∶ 𝐿 mod𝑊
(𝑡)

.
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The learnable recurrent cycles 𝑄 in RCF technique can 

effectively learn the inherent periodic patterns!
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Achieving State-of-the-Art 

Performance with Minimal 

Computational Resources

⚫ Main Results （Multivariate long-term time series forecasting）
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⚫ Ablation study（Datasets with significant periodicity）

➢ The RCF technique significantly enhances the predictive performance of basic models 

like Linear and MLP.

➢ For more advanced models, such as PatchTST, the RCF technique can also achieve 

further improvements..
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⚫ Ablation study（Comparison of different STD techniques）

➢ The RCF technique can essentially be considered a 

type of  Seasonal-Trend Decomposition (STD) 

method.

➢ RCF significantly outperforms other existing STD 

methods, particularly on datasets with strong 

periodicity.

➢ RCF enables models to overcome the limitations of 

finite-length look-back windows, as periodic 

components are globally estimated from the entire 

training set.



1. Motivations

2. Contributions

3. Method

4. Interpretability

5. Results

17

CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns (NeurIPS 2024 Spotlight)

⚫ Further analysis（The Impact of hyperparameters 𝑊）

➢ When the length of the learnable recurrent 

cycles (𝑊) is correctly set to match the 

inherent periodicity of the data,

➢ RCF can effectively learn the correct 

periodic patterns, leading to significant 

performance improvements.

➢ RCF is robust to other hyperparameters.
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➢ Determine the cycle length 𝑊 through Autocorrelation Function (ACF):

➢ The hyperparameter 𝑊 should be set to the lag corresponding to the observed maximum peak.



Thank You!
Paper Code Our Team

https://github.com/ACAT-SCUT
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