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SpaFL Framework for Learning Sparse Structures N?Ws W
> What is SpaFL? = V a
« ltis for learning structured sparsity across clients with limited computlng and =
communication resources '
» Can clients collaborate to learn optimal sparse structures without sending parameters’?
» How does SpaFL make structured sparsity? : .

* We first define a learnable threshold 7 for each neuron/filter
— can be applied to MLP, CNN, and Attention layers
* Prune entire neuron/filter if its connected average weights is smaller than the threshold

Prune if

Thresholds represent how important the connected parameters are
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Problem Formulation

» How can clients learn the optimal sparse structures with thresholds t?
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» Does it really work?

» We only‘trained threshold 7 while freezing model parameters w
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SpaFL Flow NEWS e

» SpaFL only communicates updated thresholds 7 between the server and clients

I At round t, the server randomly selects a set of clients S, and
| broadcasts global thresholds (t)
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SpaFL Generalization Analysis L

> SpaFL only communicates updated thresholds T between the server and clients

Theorem 1. For the loss function ||L||s < 1, the training data size D > E—?g In (%) and

exp(—e’d’
the total number of communication rounds T, we have
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where € = /2T log %EQ + TE%,
Decreasing function of
Generalization error model density

» As models become more sparse, the generalization error bound becomes tighter
» SpaFL can improve the generalization error by learning optimal sparse structures
by communicating thresholds t
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iImulation Results ‘
» Performance comparison with other SOTA baselines 5
FMNIST CIFAR10 CIFAR100 ) b
Algorithms Acc Comm FLOPs Acc Comm  FLOPs Acc Comm FLOPs ¢
(Gbit) (e+11) (Gbit) (e+13) (Gbit) (e+14)
SpaFL 89.21+0.25  0.1856 23779  69.75+2.81 0.4537 1.4974  40.80+0.54  4.6080  1.2894
FedAvg 88.73+0.21 133.8 10.345 61.334+0.15 258.36 12.382 35.514+0.10 10712 8.7289 : @

FedPM 63.27+£ 1.65 66.554  5.8901 52.054+ 0.06 133.19 7.0013 2856+ 0.15  5506.1 5.423
HeteroFL 85.97+0.20 68.88 5.1621 66.83£1.15 129.178  6.1908 37.82+0.15 5356.4  4.3634

Fjord 89.08+0.17 64.21 5.1311 66.38+2.01 128.638  6.1428 39.13£0.22 52514 4.1274
FedSpa 89.30+0.20 55256 52510  67.0340.63 129.31 4.2978 36.32+0.35 5342.2 9.275
FedP3 89.12+0.14  41.327  5.8923 67.54+0.52 67.345 6.8625 37.73£0.42 2682.6  4.9384
Local 8§4.31£0.20 0 3.7982 57.06£1.30 0 1.9373 33.77£1.87 0 1.5384

SpaFL outperforms other baselines with less
computing and communication resources
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Visualization of a learned conv layer on
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Thank you!

Question: msukim@vt.edu
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