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Backpropagation is Memory-Expensive
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Backpropagation

la. ov, f(x)=dv, h,
Ib. h = oh_h,



Backpropagation (Continued)
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Forward-mode AD (Contfinued)
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Forward-mode AD (Contfinued)
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Forward-mode AD Fails for Large Models
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Spry: Making Forward-mode AD Feasible
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Spry: Making Forward-mode AD Feasible
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Spry: Making Forward-mode AD Feasible
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Spry: Making Forward-mode AD Feasible
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Results: Comparable Accuracy to Backpropagation
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Results: Faster Convergence than Zero-order
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Takeaway

e Spry is a federated learning algorithm that enables finetuning LLMs using

Forward-mode Auto Differentiation.



Takeaway

e [t reduces memory footprint during training by 1.4—7.1x in contrast to

backpropagation.



Takeaway

e [t reduces the convergence time by 1.2-20.3% and achieves 5.2-13.5%

higher accuracy against zero-order methods.



Takeaway

e Theoretical analysis shows how Spry’s global gradients estimate true

gradients based on the heterogeneity of FL clients.



