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Introduction

The problem of optimizing DR-submodular functions over a convex set has at-

tracted considerable interest in machine learning and theoretical computer science.

Example applications include experimental design, resource allocation, influence

maximization, mean-field inference in probabilistic models, and MAP inference in

determinantal point processes (DPPs), among others.

For γ ∈ (0, 1], a differentiable function f : [0, 1]d → R≥0 is called γ-weakly continuous
DR-submodular if for all x, y ∈ [0, 1]d with x ≥ y, we have γ∇f (x) ≤ ∇f (y).

Online optimization

The online optimization game could be modeled as a game between an agent and

an adversary. At each time-step 1 ≤ t ≤ T , the agent plays an action xt, then

the adversary selects a function ft and a query oracle for this function. Finally

the agent then queries the query oracle. The feedback is called bandit/semi-bandit

if the query oracle returns (an estimate of) the value/gradient of ft at the point

it is being queried and the agent only queries at the point of action, i.e., xt. The

adversary is called oblivious if it selects the sequence of functions before the first

action by the agent. We use Advoi (F, B) to denote an oblivious adversary over
function class F with i-th order query oracles that return values that are bounded
by B and we replace the superscript with f to denote fully adaptive adversaries.

Following [1], in order to handle different notions of regretwith the same approach,

for an agent A, adversary Adv, compact set U ⊆ KT , approximation coefficient

0 < α ≤ 1 and 1 ≤ a ≤ b ≤ T , we define regret as

RA
α,Adv(U)[a, b] := sup

B∈Adv
E

α max
u=(u1,··· ,uT )∈U

b∑
t=a

ft(ut) −
b∑

t=a

ft(xt)

 ,

where the expectation is over the randomness of the algorithm and the query

oracle.

Static adversarial regret or simply regret corresponds to a = 1, b = T and U =
KT

? := {(x, · · · , x) | x ∈ K}. When a = 1, b = T and U contains only a single

element then it is referred to as the dynamic regret. Adaptive regret, is defined as

max1≤a≤b≤T RA
α,Adv(KT

? )[a, b]. We drop a, b and U when the statement is indepen-
dent of their value or their value is clear from the context.

Linearizable functions

Let K ⊆ Rd be a convex set, F be a function class over K. We say the function
class F is upper-quadratizable if there are maps g : F × K → Rd and h : K → K and
constants µ ≥ 0, 0 < α ≤ 1 and β > 0 such that

αf (y) − f (h(x)) ≤ β

(
〈g(f, x), y − x〉 − µ

2
‖y − x‖2

)
.

As a special case, when µ = 0, we say F is upper-linearizable.
Algorithm 1: Online Maximization By Quadratization - OMBQ(A, G, h)
Input: horizon T , semi-bandit algorithm A, query algorithm G for g, the map h : K → K
for t = 1, 2, . . . , T do
Play h(xt) where xt is the action chosen by A
The adversary selects ft and a first order query oracle for ft

Run G with access to xt and the query oracle for ft to calculate ot

Return ot as the output of the query oracle to A
end

Theorem 1. Let A be an algorithm for online optimization with semi-bandit feed-

back. Also let F be a function class over K that is quadratizable with µ ≥ 0 and
maps g and h, and letA′ = OMBQ(A, G, h). If G is a query algorithm for g that returns
unbiased estimates and its output is bounded by B1, then we have

RA′

α,Advo1(F,B1) ≤ βRA
1,Advf1(Qµ[B1])

,

where Qµ[B1] := {q|q := y 7→ 〈o, y − x〉 − µ
2‖y − x‖2, o ∈ Rd, ‖o‖ ≤ B1}.

Monotone functions over general convex sets

Lemma 1. [[2]] Let f : [0, 1]d → R be a non-negative γ-weakly monotone DR-
submodular function. Then, for all x, y ∈ [0, 1]d, we have

γ2

1 + γ2f (y) − f (x) ≤ γ

1 + γ2〈∇f (x), y − x〉.

Theorem 2. Let F be an M1-Lipschitz function class over a convex set K ⊆ [0, 1]d
where every f ∈ F may be extended to a function described in the above lemma.
Then, for any B1 ≥ M1, we have

RA
γ2

1+γ2,Advo1(F,B1)
≤ γ

1 + γ2R
A
1,Advf1(Q0[B1])

.

Monotone functions over convex sets containing origin

Lemma 2. [[3]] Let f : [0, 1]d → R be a non-negative γ-weakly mono-
tone DR-submodular differentiable function and let F : [0, 1]d → R be the

function defined by F (x) :=
∫ 1

0
γeγ(z−1)

(1−e−γ)z(f (z ∗ x) − f (0))dz. Then F is dif-

ferentiable and, if the random variable Z ∈ [0, 1] is defined by the law

∀z ∈ [0, 1], P(Z ≤ z) =
∫ z

0

γeγ(u−1)

1 − e−γ
du, (1)

then we have E
[
∇f (Z ∗ x)

]
= ∇F (x). Moreover, we have

(1 − e−γ)f (y) − f (x) ≤ 1 − e−γ

γ
〈∇F (x), y − x〉.

Algorithm 2: BQM0
Input: First order query oracle, point x
Sample z ∈ [0, 1] according to Equation (1)
Return the output of the query oracle at

z ∗ x

Theorem 3. Let K ⊆ [0, 1]d be a con-
vex set containing the origin and let F
be anM1-Lipschitz function class overK
where every f ∈ Fmaybe extended to a
function described in the above lemma.

Then, for any B1 ≥ M1, we have

RA′

1−e−γ,Advo1(F,B1) ≤ 1 − e−γ

γ
RA

1,Advf1(Q0[B1])

where A′ = OMBQ(A, BQM0, Id).

Non-monotone functions over general convex sets

Lemma 3. [[4]] Let f : [0, 1]d → R be a non-negative continuous DR-

submodular differentiable function and let x ∈ K. Define F : [0, 1]d → R
as the function F (x) :=

∫ 1
0

2
3z(1−z

2)3

(
f
(

z
2 ∗ (x − x) + x

)
− f (x)

)
dz. Then F is

differentiable and, if the random variable Z ∈ [0, 1] is defined by the law

∀z ∈ [0, 1], P(Z ≤ z) =
∫ z

0

1
3(1 − u

2)3du, (2)

then we have E
[
∇f

(
Z
2 ∗ (x − x) + x

)]
= ∇F (x). Moreover, we have

1 − ‖x‖∞

4
f (y) − f

(
x + x

2

)
≤ 3

8
〈∇F (x), y − x〉.

Algorithm 3: BQN
Input: First order query oracle, point x
Sample z ∈ [0, 1] according to Equation 2
Return the output of the query oracle at
z
2 ∗ (x − x) + x

Theorem 4. Let K ⊆ [0, 1]d be a con-
vex set, u ∈ K, h := ‖u‖∞ and let F
be anM1-Lipschitz function class overK
where every f ∈ Fmaybe extended to a
function described in the above lemma.

Then, for any B1 ≥ M1, we have

RA′
1−h

4 ,Advo1(F,B1) ≤ 3
8
RA

1,Advf1(Q0[B1])
,

where A′ = OMBQ(A, BQN, x 7→ xt+x
2 ).

Other meta-algorithms

We extend the applicability of meta-algorithms FOTZO, STB and FOTZO-2P in [1] to
all α-regret (as opposed to 1-regret). Given an algorithm designed for stochas-
tic first order feedback, FOTZO converts it to an algorithm that require stochastic
zeroth-order feedback and FOTZO-2P converts it to an algorithm that require deter-
ministic zeroth-order feedback. If the algorithm is semi-bandit, STB converts it to a
bandit algorithm. We also introduce a new meta-algorithm, namely SFTT converts
algorithms that are designed for full-information feedback into algorithms that only

require trivial query (e.g. semi-bandit/bandit).

Applications

The figure below captures the applica-

tions that are mentioned in the tables.

To obtain a result from the graph, let A
be one of SO-OGA ([5]) or IA ([6]) and se-
lect a directed path that has the follow-

ing properties: (i) The path starts at one

of the three nodes on the left. (ii) The

path must be at least of length 1 and

the edges must be the same color. (iii)

If A is IA, the path should not contain
SFTT or OTB.

Online results
F Set Feedback Reference Appx. # of queries logT (α-regret)

M
o
n
o
to
n
e

0
∈

K

∇F
Full Information stoch.

[3] ‡ (*) 1 − e−γ 1 1/2
[7] 1 − e−1 T θ(θ ∈ [0, 1/2]) 2/3 − θ/3

Corollary 7-c 1 − e−γ 1 1/2

Semi-bandit stoch.
[7] 1 − e−1 - 3/4

Corollary 7-c 1 − e−γ - 2/3

F

Full Information

det. Corollary 7-c 1 − e−1 2 1/2

stoch.
[7] 1 − e−1 T θ(θ ∈ [0, 1/4]) 4/5 − θ/5

Corollary 7-c 1 − e−γ 1 3/4

Bandit

det.
[8] ‡‡ 1 − e−1 - 3/4
[4] ‡(*) 1 − e−γ - 4/5

stoch.
[7] 1 − e−1 - 5/6

Corollary 7-c 1 − e−γ - 4/5

g
e
n
e
ra
l

∇F

Full Information stoch. [7] 1/2 T θ(θ ∈ [0, 1/2]) 2/3 − θ/3

Semi-bandit stoch.

[9]‡(*) γ2/(1 + γ2) - 1/2
[7] 1/2 - 3/4

Corollary 7-b γ2/(1 + cγ2) - 1/2

F
Full Information

det. Corollary 7-b γ2/(1 + cγ2) 2 1/2
stoch. [7] 1/2 T θ(θ ∈ [0, 1/4]) 4/5 − θ/5

Bandit stoch.
[7] 1/2 - 5/6

Corollary 7-b γ2/(1 + cγ2) - 3/4

N
o
n
-M
o
n
o
to
n
e

g
e
n
e
ra
l

∇F
Full Information stoch.

[7] (1 − h)/4 T θ(θ ∈ [0, 1/2]) 2/3 − θ/3
[4] ‡(*) (1 − h)/4 1 1/2

Corollary 7-d (1 − h)/4 1 1/2

Semi-bandit stoch.
[7] (1 − h)/4 - 3/4

Corollary 7-d (1 − h)/4 - 2/3

F

Full Information

det. Corollary 7-d (1 − h)/4 2 1/2

stoch.
[7] (1 − h)/4 T θ(θ ∈ [0, 1/4]) 4/5 − θ/5

Corollary 7-d (1 − h)/4 1 3/4

Bandit

det. [4] ‡(*) (1 − h)/4 - 4/5

stoch.
[7] (1 − h)/4 - 5/6

Corollary 7-d (1 − h)/4 - 4/5

Offline results
F Set Feedback Reference Appx. Complexity

M
o
n
o
to
n
e

0
∈

K

∇F stoch.

[10] 1 − e−γ O(1/ε3)
[11] 1 − e−γ O(1/ε2)
[3] ‡ 1 − e−γ O(1/ε2)

Corollary 7-c 1 − e−γ O(1/ε2)

F
det.

[12] 1 − e−γ O(1/ε3)
Corollary 7-c 1 − e−γ O(1/ε2)

stoch.
[12] 1 − e−γ O(1/ε5)

Corollary 7-c 1 − e−γ O(1/ε4)

g
e
n
e
ra
l

∇F stoch.

[2]‡ γ2/(1 + γ2) O(1/ε2)
[12] γ2/(1 + γ2) Õ(1/ε3)

Corollary 7-b γ2/(1 + cγ2) O(1/ε2)

F
det.

[13] γ2/(1 + γ2) Õ(1/ε3)
Corollary 7-b γ2/(1 + cγ2) O(1/ε2)

stoch.
[13] γ2/(1 + γ2) Õ(1/ε5)

Corollary 7-b γ2/(1 + cγ2) O(1/ε4)

N
o
n
-M
o
n
o
to
n
e

g
e
n
e
ra
l

∇F stoch.

[12]
γ(1−γh)

γ′−1

(
1
2 − 1

2γ′

)
O(1/ε3)

[4] ‡ (1 − h)/4 O(1/ε2)
Corollary 7-d (1 − h)/4 O(1/ε2)

F
det.

[12]
γ(1−γh)

γ′−1

(
1
2 − 1

2γ′

)
O(1/ε3)

Corollary 7-d (1 − h)/4 O(1/ε2)

stoch.
[12]

γ(1−γh)
γ′−1

(
1
2 − 1

2γ′

)
O(1/ε5)

Corollary 7-d (1 − h)/4 O(1/ε4)

Online non-stationary results
F Set Feedback Reference Appx. regret type α-regret

M
o
n
o
to
n
e

0
∈

K

∇F
Full Information stoch.

Corollary 8-c 1 − e−γ dynamic T 1/2(1 + PT )1/2

Corollary 7-c 1 − e−γ adaptive T 1/2

Semi-bandit stoch. Corollary 7-c 1 − e−γ adaptive T 2/3

F
Full Information

det.
Corollary 8-c 1 − e−γ dynamic T 1/2(1 + PT )1/2

Corollary 7-c 1 − e−γ adaptive T 1/2

stoch.
Corollary 8-c 1 − e−γ dynamic T 3/4(1 + PT )1/2

Corollary 7-c 1 − e−γ adaptive T 3/4

Bandit stoch. Corollary 7-c 1 − e−γ adaptive T 4/5

g
e
n
e
ra
l

∇F Semi-bandit stoch.
Corollary 8-b γ2/(1 + cγ2) dynamic T 1/2(1 + PT )1/2

Corollary 7-b γ2/(1 + cγ2) adaptive T 1/2

F
Full Information det.

Corollary 8-c γ2/(1 + cγ2) dynamic T 1/2(1 + PT )1/2

Corollary 7-c γ2/(1 + cγ2) adaptive T 1/2

Bandit stoch.
Corollary 8-b γ2/(1 + cγ2) dynamic T 3/4(1 + PT )1/2

Corollary 7-b γ2/(1 + cγ2) adaptive T 3/4

N
o
n
-M
o
n
o
to
n
e

g
e
n
e
ra
l

∇F
Full Information stoch.

Corollary 8-d (1 − h)/4 dynamic T 1/2(1 + PT )1/2

Corollary 7-d (1 − h)/4 adaptive T 1/2

Semi-bandit stoch. Corollary 7-d (1 − h)/4 adaptive T 2/3

F
Full Information

det.
Corollary 8-d (1 − h)/4 dynamic T 1/2(1 + PT )1/2

Corollary 7-d (1 − h)/4 adaptive T 1/2

stoch.
Corollary 8-d (1 − h)/4 dynamic T 3/4(1 + PT )1/2

Corollary 7-d (1 − h)/4 adaptive T 3/4

Bandit stoch. Corollary 7-d (1 − h)/4 adaptive T 4/5
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