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> Motivation and contribution

Whether the inference logic of a DNN can be faithfully
explained as symbolic concepts/primitives?

 How to define concepts encoded by a DNN: an open problem!
» Many previous studies: based on intuition and empirical observation
> Recent studies: mathematically formulate concepts using interactions, having observed!!
and proved!? the emergence of sparse interaction concepts
> Empirically observed!3! the two-phase dynamics of interaction concepts, which explains

the change of generalizability at the concept level

* Our main contribution:
Theoretically prove the two-phase dynamics of interaction concepts

[1] Li and Zhang. Does a Neural Network Really Encode Symbolic Concept? ICML 2023.
[2] Ren et al. Where We Have Arrived in Proving the Emergence of Sparse Symbolic Primitives in DNNs. ICLR, 2024.
[3] Zhang et al. Two-Phase Dynamics of Interactions Explains the Starting Point of a DNN Learning Over-Fitted Features. arXiv preprint arXiv: 2405.10262v1.



> Preliminary: interactions
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Given a DNN v: R"™ — R and an input sample x with n input variables N = {1, ..., n}, the network
output v(x) can be disentangled into different interaction effects:
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Given a DNN v: R"™ — R and an input sample x with n input variables N = {1, ..., n}, the network
output v(x) can be disentangled into different interaction effects:
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> Preliminary: interactions

Interaction-based _ x triggers
Nerscrk Gt ) logical model fx) = ng;v : (interaction S) {51
Model equivalence
i [ Lor (51102 | [ Fana(S:12)=0.4 | =+ Iy (S10-—0.1]

= ¢ 3

4-order OR
interaction
2-order OR 3-order AND
interaction interaction
* Complexity (order) of interactions: defined as |S]|
o If|I,nq(S|x)]| or [I,-(S]|x)] is large Salient interaction concept
* I [Lipa(S|x)] or [Io (S|x)| = 0 Noisy pattern

Desirable properties: sparsity, universal matching, sample-wise/model-wise transferability...



> Two-phase dynamics of interaction concepts
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* First phase: random noise (spindle-shaped) - low-order (simple) interactions
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> Two-phase dynamics of interaction concepts
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* First phase: random noise (spindle-shaped) - low-order (simple) interactions

* Second phase: low-order (simple) interactions - gradually encode high-order (complex) interactions
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> Two-phase dynamics of interaction concepts

=9
«
&

Initial 8th l6th 32nd 64th 128th
epoch epoch epoch epoch  epoch

* First phase: random noise (spindle-shaped) - low-order (simple) interactions
* Second phase: low-order (simple) interactions - gradually encode high-order (complex) interactions
 Two phases are temporally aligned with loss gap

» Complexity of interactions «» generalizability/overfitting level

» High-order interactions have weaker generalization power

Zhang et al. Two-Phase Dynamics of Interactions Explains the Starting Point of a DNN Learning Over-Fitted Features. arXiv preprint arXiv: 2405.10262v1.



> Two-phase dynamics are widely observed

VGG-11 AlexNet

BERT-Medium

The two-phase dynamics has been observed on different DNNs and datasets
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Extracting interactions from different time points during training
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> Theoretical explanation of two-phase dynamics

Main assumptions

 Reformulate the inference on a sample as a weighted sum of interaction triggering functions
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> Theoretical explanation of two-phase dynamics

Main assumptions

 Reformulate the inference on a sample as a weighted sum of interaction triggering functions

 The training of a DNN can be viewed as regressing a set of potential ground-truth interactions

 Parameters in an initialized DNN contain a large amount of noise, and we assume that this parameter
noise gradually decreases during the training process
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> Theoretical explanation of two-phase dynamics

Analytical solution

Interactions encoded by the DNN at an intermediate point during training can be formulated as
the solution to the following objective:

argminL(w) ,  Lw) = EcEscy |(vs —w'(J(xg) +€))°]

def

Vs & y(xs) = )ipcs Wy set of ground-truth interactions to learn

w = vec({wy}rcy): weights, |wg| - strength of interaction T
J(x) = vec({Jr(x)}rcy): interaction triggering function, VX, J;(Xs) = 1(T € 5)

€ = vec({e;}rcy): noise on the interaction triggering function (induced by the parameter noise),
E[er] = 0, Var[er] = 2/Tl52.

As training proceeds, noise level 6% gradually decreases



> Theoretical explanation of two-phase dynamics

argminL(w) ,  LW) = EcBsen [(ys ~wTJ(xs) + )| ¢ Varler] = 2702

Explaining the two phases based on analytic solution

Large noise g2
Initial random converge to Solution W under
interactions w, large noise
\ ) /
Y J/

First phase

v
Low-order interactions



> Theoretical explanation of two-phase dynamics

argminL(w) ,  LW) = EcBsen [(ys ~wTJ(xs) + )| ¢ Varler] = 2702

Explaining the two phases based on analytic solution

Large noise o2 Small noise o2
Initial random converge to Solution W under  tr3INiNg proceeds ¢4y tion @ under
interactions w, large noise small noise
\ ) / \ )
¥ Y
First phase Second phase

v
Low-order interactions



> Theoretical explanation of two-phase dynamics

argminL(w) ,  LW) = EcBsen [(ys ~wTJ(xs) + )| ¢ Varler] = 2702

Explaining the two phases based on analytic solution
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\4 \ Proposition i Wesets 7,77 C N with |T| < [T"), |[vivrllo/ ||z is greater than 1 and
\

decreases throughout training. The norm ||vhr |2 is only determined

LOW_O rd e r i nte ra Ct i 0 n S \‘v by n, a2, and the order |T)|, but is agnostic to finally-converged interactions {wy : T C N}.

We prove that in w, the ratio of
low-order to high-order interaction
strength gradually decreases

Gradually encode higher-order interactions



> Theoretical vs. real interaction distribution

* Theoretical interaction distribution can well predict real interaction distribution
at different time points
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> Conclusion

In this study:

 We focus on a two-phase dynamics of interaction concepts encoded by a
DNN, which is previously discovered to temporally align with the loss gap

 We theoretically prove the two-phase dynamics under certain assumptions

* QOur theory can predict real dynamics of interactions quite well
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