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Design Optimization in Low-Data Regimes

= Problem Setup and Motivation
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Design Optimization in Low-Data Settings ngfg%ie“t

A Genentech Accelerator

= Challenges in explicitly guided design: generative + discriminative model

Explicit guidance A
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- Requires a (trustworthy) discriminative model
- Large training datasets

- Falls off data-manifold

- Difficulty in non-convex, complex distributions
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Design Optimization in Low-Data Settings
= Implicitly guided design

Implicit guidance

Step 1: Match dataset Step 2: Train PropEn
Q O
oo EXR. g0
— OO OO
@) I O
PropEn latent space

train dataset matched dataset

- No need for discriminative model

- Low data regime

- In-distribution designs (with theoretical guarantees)

- Linear approximation of the gradient close to starting designs
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Step 1: Match dataset

Property Enhancer - PropEn ng;sg%ient
= Step 1: Match your dataset A Genentech Accelrator

aaaaaaaaaaaaaa

We view the group of samples with superior property values as the treated group and their

lower value counterpart as the control group. This motivates us to construct a matched
dataset for every (x, y) within D:

M={ (@)

x,x' €D }
2" — z|* < Ag, g(z') — g(z) € (0,4,] [’

Where A;and Ay are predefined, positive thresholds that will trade-off exploration vs
exploitation.

One control - to - many treatments -> extending dataset by large order of magnitude!
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- Step 2: Approximate the gradient

Once a dataset has been matched, we train a deep encoder-decoder network f; over M by
minimizing the matched reconstruction objective:

Wi M) = oo S0 falw), )

| | (xz,x’)eM

Minimizing the matched reconstruction objective yields a model that approximates the direction
of the gradient of g(-), even if no property predictor has been explicitly trained.

Theorem 1.
Let f* be the optimal solution of the matched reconstruction objective with a sufficiently small

A . For any point x in the matched dataset for which p is uniform within a ball of radius A , we
have f*(x)ecvg(x) for some positive constant c.
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- Step 3: Iterative optimization and sampling A Genentech Accelerator

At test time, we feed a seed design x, to PropEn, and read out an optimized design x,
from the its output. We then proceed to iteratively re-feed the current design to PropEn

until f(x,) =x
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optimization step
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In-vitro experiment: therapeutic protein optimization
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Expression rate: ~95%
Binding rate: ~90%

A. Creating pairs B. Matched batch
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D. Generating/Optimizing antibodies with PropEn

D. 1. Iterative Optimization
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C. Training PropEn

Ab 1

neural network
decoder

% training loss:

L(Fo(Aby), Aby) + £(Fo(Abr), Aby)

st L(z,y) = |lz—yl]

C.1. PropEn training in embedding space
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D. 2. Input conditional sampling: AA probabilities over aHo

positions
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In-vitro experiment: therapeutic protein optimization

Experimental design

Antibodies in bulk

- taSI.(: optimizing the binding affinity of lead ,// , h\\ oo
antibody molecule J /f’ | transport

- metric: negative log ratio of the association and -
dissociation constants (pKD) ’/‘* AR wntbodies

- data collection: low-throughput Surface l)k\ e H . E?izc:e:»?ir?]obilzed
Plasmon Resonance (SPR) experiments “ER AR A e difusion

- data: 3 targets, 9 seeds '*" ’ II g

«— Gold SPR sensor

Baselines -— <= Incident light

+«——— Glass prism

Latent Diffusion - unguided and guided!®!, discrete
Walk-Jump Sampling Y1, Lambo 2 ?!

1 [1] Frey, Nathan C., et al. "Protein discovery with discrete walk-jump sampling." /CLR 2024.
[2] Gruver, Nate, et al. "Protein design with guided discrete diffusion." Neur/PS 2023.

[3] Choi, J., et al. "Conditioning method for denoising diffusion probabilistic models. ICCV 2021.
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Table 1: Binding rate (and number of designs submitted). Higher is better.

Herceptin T1S1 T1S2 T1S3 T2S1 T2S3 T2S4 overall
PropEn 90.9% (11) 100.0% (4) 100.0% (6) 100.0% (24) 20.0% (5) 100.0% (23) 100.0% (16)  100.0% (4)  94.6% (93)
walk-jump [7] - 25.0% (4) 80.0% (15) 100.0% (18) 26.7% (30) 100.0% (15) 63.6% (11)  62.9% (105)
lambo (guided) [8] 50.0% (10)  0.0% (4) - 100.0% (5) 0.0% (9) 100.0% (1)  57.1% (14)  44.2% (43)
diffusion - 100.0% (8) 85.7% (14) - - 88.2% (17) 66.7% (6) 86.7% (45)
diffusion (guided) - 85.2% (27) 96.9% (32) - - 93.3% (15)  100.0% (10)  92.9% (84)

Table 2: Fraction of designs improving the seed and total designs tested. Higher is better.

Herceptin T1S1 T1S2 T1S3 T2S1 T2S3 T2S4 overall
PropEn 0.0% (11) 100.0% (4) 333%(6) 41.7%(24) 0.0%(5) 69.6% (23) 0.0% (16) 0.0% (4)  34.4% (93)
walk-jump (7] - 25.0% @)  6.7% (15  5.6%(18) 3.3% (30) 0.0% (15)  0.0% (11)  4.8% (105)
lambo (guided) [8] 10.0% (10)  0.0% (4) - 0.0% (5) 0.0% (9) 0.0% (1) 35.7% (14) 14.0% (43)
diffusion - 62.5% (8) 14.3% (14) - - 0.0% (17)  0.0% (6)  15.6% (45)
diffusion (guided) - 51.9% (27) 15.6% (32) - - 0.0% (15)  0.0% (10)  22.6% (84)
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Figure 5: Therapeutic protein optimization results: (a) The left figure contrasts the binding rate with
the 90-th percentile of the binding affinity improvement for each method and seed. Points on the
top-right are on the Pareto front. (b) The right figure focuses on binders and reports the histograms of
binding affinity improvement across all designs and seeds.
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Summary & Outlook
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property enhancement method without discriminator for a single or multiple properties
data (modality) agnostic

works well even in small - medium data regimes

easy to train - no hyperparameter tuning
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- Instead of single property, we can optimize for a multivariate score of a molecule

Step 1: compute multivariate rank/score for multiple properties
Step 2: match and optimize designs for the multivariate score with Propen

m\ Model:
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Variations of PropEn

(PropEn) mix
- reconstruct both better design and the original
U(f,D) = Bonp[Bornp, [6(2", f(2)) + BL(z, f(2))]
- lets us stay close to the seed

- increases diversity

(PropEn) x2x reconstruct only the design
xy2xy reconstruct the design and the property value;
- helps stabilizing training
- allows for controlled generation
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Variations of PropEn

= ablation study on toy data
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(PropEn) x2x - reconstruct only the design
Xy2xy - reconstruct the design and the property value; g
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Figure 3: PropEn in toy examples in d € {50, 100}, left side: 8-Gaussians, right side: pinwheel

Distribution of evaluation metrics from 10 repetitions of each experiment
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