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Backgrounds

* Machine Unlearning (MU) aims to remove the influence of samples
from a pre-trained model, ensuring the model behaves as If it has
never encountered those samples.

* Existing MU methods are mainly divided into two categories: exact
MU and approximate MU:

* Exact MU ensures that the parameter distribution of the unlearned model is
iIdentical to that of a model trained from scratch without seeing the
forgetting samples. The computational cost of retraining In response to every
forgetting request Is prohibitive.

* Aproximate MU guides the unlearned model output distribution to
approximate the output distribution of RT. Using KL divergence to measure:

min Dict, (p- (6.) [p+(6)) = min [ p (6. log p- (6.) /p=(6)] 4D



Revisit Approximate MU Methods via Vanilla Gradient Descent

* The optimization problem of Approximate MU:

: - 1
9t+1 = arg mlnpKL (sz (9*) ||sz (9t+1))JPf + PKL (pz"‘ (9*) ||Pz"" (9t+1))JP + a—t f (Gta 9t+1)
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(a) (b) (c)
(a): seeks to eliminate the influence of the target forgetting samples
(b): aims to maintain the performance on the remaining samples
(c): employs the metric to constrain the magnitude of each update

* The vanilla gradient descent for approximate MU in Euclidean distance:

Proposition 1. Under the Euclidean manifold metric, p(0y,0:41) = 5||6; — 0¢+1|?. Assuming that
the current model 0; = argming L (0;&,) + L7(0). Let Hi = V2L (0,;1)and HT = V2L" (6,

denote the Hessian of the retrained model on the forgetting set and the remaining set, respectively.
Then, the steepest descent direction that minimizes (2) is approximately:

i1 — 0, i —ou[HI (HD) 7L [V L (0, €0)] pf + VL (6:) p7]. 3)
- ~ o N ~ - Hf_/
(S) (F) (R)




Approximate MU in Remain-preserving Manifold

How to constrain parameter updates to minimally impacts the retained performance?

* The gradient descent for approximate MU in remain-preserving KL divergence:

Proposition 2. Using the model output KL divergence on the remaining set as the manifold metric,
P(0:,0:41) = D (por (0:)||p2r (0:11))). Assuming that the current model 6, = arg ming L7 (6) +
L7 (0;e:). Let &y = ayp’ /(ayp”™ + 1), and HY = V2L"(0,) represent the Hessian w.r.t. 0; on the
remaining set, then the steepest descent direction that minimizes (2) is approximately:

~ ~ —1 —1 .
Ori1 — 0y 1~ —y (HY) ™' [HI(H]) ™' [-VL (8 :)]). (4)
(R) (5) (F)
Approximate Task MU components | Manifold Online
MUMethods | Cls Gen | (S) (F) (R) Metric Hessian
FT[22, 19, 28] | ¢ v v / : : : :
GALL.0] | v v v 0 Challenges in Hessian Approximation:
BT[] v v v / ' :
SallUn [26] A A a computationally demanding
SA[15] v v v Dgy
SFR-on 4 | v/ v | Do v




Proposed Method

* Implicit Online Hessian Approximation (R-on)
We propose a fast-slow weight method for implicitly approximating the desired updates:

min £ (9,{) st. 6/ =8, - B,VLY(8,)
6/

Proposition 3. For implicit online Hessian approximation in (5), suppose (:,0; is small, B; <
\VOi/|VLT(0;) — [VLT(0,)]?|, LT is p-smooth, ie., ||[VL(0) — VL (0")|2 < ull6 — 6|2, and
there exist an (.-neighborhood N (07, ;) of the optimal model parameter §] = arg min, f L" (9{ )s

which includes 0; and 9{ . Then, the iterative update term approximately is,

0, — 07 =~ B2 [V2L7(6,)] " VL6,) = B2(H]) " VL (6,). (6)

The model obtained after fine-tuning Is approximately equivalent to updating
the current model in the Hessian-adjusted unlearning directing.



Proposed Method

* Sample-wise Adaptive Coefficient for Gradient Ascent (F)
A heuristic estimation for coefficients weighting the unlearning loss.

Using empirical loss as an evaluation metric for sample contribution.

%) 1/[€(9t3 )]detach % Nf, 1 S ; S Nf,
Zz}ce’pf ]'/[ (gts j)]detach

* Forget-Remain Balanced Weight Saliency (S)

Eri = (1—

Using the diagonal of the initial model’s Fisher information matrix on forgetting
and remaining to enhance the unlearning process.

Focus on the parameters that are crucial for erasing specific samples or concepts.

m=1I|F!

fe(Fiag) " > 7|, where Bl = (VLI (00)]2, Fiiy = [VL" (6)]2



Saliency Forgetting in the Remain-preserving manifold online (SFR-on)

Implicit Online Hessian Approximation (R-on) Adaptive Weighted Gradient Ascent (F) Forget-Remain Balanced Weight Saliency (S)
S Inner Loop ~ L Y6 Qo m =t [Fl(F ™ 20| ) Tuned |12 Frozen
> Ui mj l Ei=(1-=) L ceiel x NI
| —— Mo l T3 s eps VIO 25 icacn Condition
' N ~ I 'IV_ _\lr
I /% I Cin gj’]’ -t \
\a- _—. ________________________ X_ —_: ' @ I - Q ) Q “l
| ‘ —_
. gL gr SV Bg Vv
Ut Outer Loop : , :
N e e e e e e e e - - / —0(0y; z{ ) Adaptive Coefficient

Inner Loop : m:}nﬁr((?:f) s.t. 9{ =0, — Bm © (-VLI(8;;&,))],

t

Outer Loop : 041 = 0, — o, (8; — 07) = 6, — o, B2(HT) 1 m © (—=V LS (6, &))],

* In the inner loop for fast weights, we use adaptive coefficients to weight the forgetting
gradient ascent with the weight saliency map to serve as the unlearning update.

* Slow weights in outer loops update by linearly interpolating the fine-tuned parameters
In weight space, achieving an estimated steepest descent for approximate MU under the
remaining output constraint.

* QOur SFR-on does not require adaptation to specific application tasks.



Results on Random Forgetting in Image Classification Tasks

CIFAR-10 Random Subset Forgetting (10%)

TinyImageNet Random Subset Forgetting (10%)

Methods FA RA TA MIA | Avg.D || Dy || RTE FA RA TA MIA | Avg.D || Dy, || RTE
RT | 95.6210.25 (0.00) 100.00¢ 00 (0.00) 95.34.4005 (0.00) 74.841000 (0.00) 000  0.10 73.37| 85.2910.09 (0.00) 99.55:¢ .03 (0.00) 8549015 (0.00) 69.30.920 (0.00) 000  0.18 42.01
FT 99.90.0 o5 (4.28)  99.99. 100 (0.01) 94.94. 15 (0.39) 88.25.00; (13.42) 452 026 3.83 |96.45.013 (11.16) 98.29., og (1.26) 82.46.0 16 (3.03) 90.0044 90 (20.70) 9.04  0.60 438
GA 93.9111 67 (LT71)  93.7641 80 (6.24) B7.0041 64 (8.34) T7.19100; (2.35) 4.66 036 079 | 83.2814.15 (2.01) 84.5544.63 (15.00) 70.981561 (14.51) 73.8613.31 (4.56) 9.02 1.09 4.13
RL 95.990.24 (0.38)  99.98:0.01 (0.02) 93.85:0.11 (1.48) 31.44:001 (43.40) 1132 034 4.56 | 93.35.410.31 (8.06) 98.15:0.14 (1.40) 82.984022 (2.51) 45.2941 04 (24.00) 9.00 047 4.79
SdlUn 100.00-’,—[}_(]1 (438) gg.gg-l,-[}_[]l (U’Ol) 94.89-’-[}.(]5; (045) 67'54+[}.l]ll (?29) 30’3 02? 458 9578-{-(]25 (1049) 98.60-{-0_[}{5 (095) 8363+[}Az (18?) 51184‘1'?2 (1812) ?86 048 488
BT 98.88.0 00 (3.26)  99.99. 100 (0.01) 94.63.0 06 (0.71) 61.77g.00 (13.07) 426 024 556 | 93.2210.130 (7.93) 97.82.0 14 (1.73) 83.044005 (2.45) 47.53.07, (21.77) 847 047 6.79
SCRUB | 99.44.0.4 (3.82) 99.88 g0s (0.12) 94.13 .45 (1.20) 87.43:0.00 (12.59) 443 025 256 |97.230.05 (11.94) 98101094 (1.45) 82741021 (2.75) 81.3210.47 (12.02) 7.04 062 549

S F R on

/ 96.38.0 35 (0.76)  99.6640.0; (0.34) 91.96. 01, (3.38) 83.16.404- (832) 320 032 3.13 | 89.9040.30 (4.61) 94.05.0 19 (5.50) T7.98.05 (7.51) 78.16:00; (8.86) 662 073 6.10
/| 96841050 (1.22) 99.92. . (0.08) 94.18. (5 (1.16) 80.38.005 (5.54) 2.00 023 212 | 93.42, 416 (8.13) 08.92., 04 (0.63) 83.45.0,, (2.04) 81.84,,-, (12.54) 583 073 4.02

v v | 86161072 (0.54)  99.9840.20 (0.02) 94.2440.30 (1.10) 70.64+0.26 (4.20) 1.47 020 212 [95.51+0.25 (10.22) 98.79+0.04 (0.76) 83.114p13 (2.38) 64.0040.87 (5.30)  4.67 045 4.02
v | 96.58.0.77 (096)  99.8815 .16 (0.12) 94.19. 433 (1.15) 72.26.10.01 (2.58) 1.20 0.15 2.80 |97.0210.16 (11.73) 991805 (0.37) 84.0040.15 (1.49) 7T1.094476 (1.79)  3.85 0.44 421

* SFR-on most closely aligns with RT In the averaging metric disparity and

exhibits the smallest output KL divergencesw.rt. RT.
* Replacing (R) with our (R-on) remarkably improves the image fidelity of the

remaining classes, but the forgetting class images still show low-quality

textures.

* Our (F) and (S) effectively direct the unlearning process towards the
approximate MU, ensuring that the performance of the unlearned models
closely mirrors that of RT.



Results on Class-forgetting in Image Generation Tasks

* Class-wise forgetting
on CIFAR-10 using
DDPM

* OQur SFR-on effectively
removes the ‘cat’ class
by yielding high-
quality pictures without
discernible semantics

* Our SFR-on maintains
the high fidelity of
Images across non-
forgetting classes.

Methods

CIFAR-10 Class-wise Forgetting
Automobile
FA| FID |

ruck
FAJ, FID |

£
FA| FID||FA| FID |

Cacatua galerita
FA| FID|

Steps

Golden retriever
FA| FID|

ImageNet Class-wise Forgetting
White wolf | Arctic fox
FA| FID||FA| FID|

Otter
FA| FID|

Steps

SA
SalUn
SFR-on

0.00 23.56 14.20 21.34 8.60 21.19 0.00 21.13
0.20 21.23 1.40
0.00 20.70 7.40

0.00 29.04 10000
20.29 0.00 20.18 0.60 20.70 0.80 20.45 1000
18.44 0.20 18.89 0.00 19.93 0.00 20.61 50

0.00 34875 0.00 29897
91.21 1847 46.09 2528
0.00 1359 0.00 17.76 0.00 2328 0.00 16.12 0.00 16.43 500

0.00 45.89 0.00 39391 29.8 321.21 10000
0.00 15.16 45.90 408.07 87.50 19.69 10000

Methods

Forgetting class: ‘Cat’

ct | c2 | c3

Non-forgettmg classes
| C4 | C5 | C6 | C7T | C8 | C9 |
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Results on Class-forgetting in Image Generation Tasks

() C | a SS _ WI S e f O rg ettl n g I n Methods Forget: ‘Golden retriever’ Non-forgetting classes

Image generations of ,
|mageNet W|th D|T Pretrain

* OQur SFR-on successfully
forgetting the target
class without degrading
the general generative SA
capability.

RTT

SalUn

SFR-on




Conclusion

* We provide a novel perspective to unify previous approaches by
decomposing the vanilla gradient descent direction of approximate
MU Into three components: weighted forgetting gradient ascent,
remaining gradient descent, and a weight saliency matrix.

* We derive the steepest descent direction for approximate MU on the
remain-preserved manifold.

* We propose a fast-slow weight method to implicitly approximate
online Hessian-modulated salient forgetting updates.

* We conduct experiments on a wide range of CV unlearning tasks
across multiple datasets and models of different architectures,
verifying the effectiveness and efficiency of our method.
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