.."rg;&.‘.
},. NEURAL INFORMATION
';gi. PROCESSING SYSTEMS

Scalable DBSCAN with Random
Projections

HaoChuan Xu and Ninh Pham

Project Pages: https://github.com/NinhPham/sDbscan
Paper: https://neurips.cc/virtual/2024/poster/94318

/7 THE UNIVERSITY OF

AUCKLAND

: Te Whare Wananga o Tamaki Makaurau
NEW ZEALAND

DBSCAN Algorithm: Overview

(Image sourced from Wikipedia)

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algorithm for discovering clusters
in large spatial databases with noise. In KDD, pages 226—-231, 1996.

The Primary Steps of DBSCAN

DBSCAN takes parameters (g, minpts) and
performs the following two primary steps:

1. Core points identification: For each data point p,
find all the neighbours x where dist(x, p) < €. The
point p is defined as core point if the number of
its neighbours is greater than the specified
minpts.

Computation Cost: O(dn?)

2. Cluster Formation: Connect each point with its \
neighboring points to form the cluster

In this diagram, minPts = 4.

Random projection-based neighborhood
preservation

Lemma 3.1 For any two points q,x € X with D Gaussian random vectors generated.
Suppose D is sufficient large and random r, = argmax,. q-r;. The following statement
can be deduced:

z'r,~N(z'qvV2InD,1 — (2" ¢)?) (1)

Ninh Pham. Simple yet efficient algorithms for maximum inner product search via extreme order statistics. In
KDD, pages 1339-1347, 2021.

sDbscan: Intuition

* |ldea:

 Use random vectors as pivots/references
* “Neighbors of neighbors are neighbors”

* If g is close to r,, then g should be
close to points around r,

* sDbscan:

* For each random vector r;, keep top-
minPts closest points in L
- If qis closest to r,, then compute dist(q, x)

for all x € L, to find approximate &-
neighborhood - O(minPts) distances

sDBSCAN: Algorithm Procedures

Algorithm 2 Preprocessing

1: Inputs: X C S%1, D random vectors r;, k, m = O(minPts)
2: for each q € X, compute and store top-k closest and top-k furthest vectors r; to q.
3: for each random vector r;, compute and store top-m closest and top-m furthest points to r;.

Algorithm 3 Finding core points and their approximate neighborhoods

1: Inputs: X C S%~1, D random vectors r;, k,&,m = O(minPts)

2: Initialize an empty set B (q) for each q € X

3: for eachq € X do
for each r; from top-k closest (or furthest) random vectors of q do

for each x from top-m closest (or furthest) points of r; do
if dist(x,q) < ¢ then
Insert x into Be(q) and insert q into B (x)

: for eachq € X do
if | B-(q)| > minPts then
10: Output q as a core point and B.
11: Output dist(x, q) for each x €

R AR A

) as an approximate Béébq) for DBSCAN (Alg.

(q
Be(q) for OPTICS (Alg.

Time Complexity: O(n - k - minPts)
Space Complexity: O(n - (d + k))

sDbscan: Theory

* Guarantees:

* Guarantee on recovering Dbscan’s
result if nearby core points share at
least t = log(n) common core points
(i.e. cluster is not thin anywhere)

* Extension:

 Extend to L1, L2, Jensen-Shannon, y?
distances via random features

* sOptics to guide the setting of (&,
minPts)

Two close core points

share at least t common
core points
In their neighborhood

Challenge of DBSCAN and sDBSCAN

The clustering quality of the DBSCAN and sDBSCAN depends on the chosen €
parameter.

* It becomes more sensitive in high-dimensional space

* Changing the € value by 0.005 can decrease the clustering accuracy by 10% on pamap2 dataset

OPTICS plot is commonly used approach to select the € parameter.

sOPTICS are designed to finding the optimal € parameter for sDBSCAN

Experiment: Mnist (n = 70,000, d = 784)

sDbscan returns the same clustering accuracy (NMI 43%) as scikit-learn but runs
100x faster with minPts = 50

sOptics runs in 3 seconds while scikit-learn runs in 1.5 hours

o
S
-

2000 025 025
15 — — o= a2
B B 1500 o k7
o o) 0.15 ') 0.15
¥ — F—
8 g 1000 é 0.1 8 0.1
o o5 o Qoo 2 05
0 500 0 0
0 2 3 4 5 6 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 6 6 7
(a) sOptics (L1) «10* (b) sOptics (L2) =10 (c) sOptics (Cosine) x10* (d) sOptics (JS) x10*

Experiment:Mnist8m (n = 8.1M, d = 784)

sDbscan and sOptics run in 15’ in a single machine
* NMI = 38% with minPts = 50
* NMI =40% with minPts = 100

Kernel k-mean runs in 15" in a supercomputer with 32 nodes
* NMI =41% with k = 10 (prior knowledge of # clusters)

Scikit-learn cannot run any clustering algorithms due to memory limits

