Dynamic Tuning Towards Parameter and Inference
Efficiency for ViT Adaptation

Wangbo Zhao'-2 Jiasheng Tang??3 Yizeng Han24 Yibing Song?3 Kai Wang'
Gao Huang* Fan Wang? Yang You
'National University of Singapore 2DAMO Academy, Alibaba Group
SHupan Laboratory 4Tsinghua University

Code: https://github.com/NUS-HPC-AI-Lab/Dynamic-Tuning

Motivation

« Representative PEFT methods do not reduces the computation during inference compared
to full tuning.

« Dynamic networks helps to reduce model inference costs. However, they primarily focus on pre-
training from scratch or full tuning on the same dataset, without considering data domain transfer

 How to develop dynamic modules together with PEFT methods to enhance both parameter and
inference efficiency during ViT adaptation

19 18.30 7744
181 1758 17.61 17.58 76
—_~] o
©) 17 S 74.75 74.60
~ 161 > 741
(73] (@]
o © +8.18
9 151 -29%, 8 72 71.96
L 14 3
701
131 1254 | | 68.96
68

12="byT — Fulltuning AdagiFormer LoRA VPT Dy UG AJST/ESmer LB VPT
a

Methodology-Dynamic Tuning

__

|, Forward ~ Backward — Sigmoid Element-wise) Token dispatch |
__Propagation | popagation " function _ ® product_ ® " add | ___basedonM)
S|(@9) () (0.8] < - X
(Jolo[1o B) O
th=0.5 O
Sig >I¢ O
Gumbel Noise | * = Block]
G1.Ga—} :[Block = o O
- O
h £ 4) 5 x I
I Adapter ——¢ : Adapter —o
xX(OOOOOF —— x OO0 0O0O]
(a) Fine-tuning Stage (b) Inference Stage

! N < | Block(X)-M Forward Propagation
X =X+Xs+ Adapter(X) Xs = {Block(X) S Backward Propagation

Methodology-Model Variants

Since the impact of skipping tokens in these blocks during the adaptation fine-tuning remains non-trivial
to estimate and has not been explored in previous works, we propose four model variants

' DyT

Attn Dispatch MLP Dispatch Attn-MLP Dispatch Layer Dispatch

« Attn Dispatch: Considering the quadratic computational complexity of the Attn block with respect to the toker
numbers, skipping tokens before applying Attn can significantly reduce computation.

« MLP Dispatch: MLP takes ~63.5% FLOPs in ViT-B/16 and propose to skip tokens only before MLP.
« Attention-MLP Dispatch: Skipping tokens before both self-attention and MLP blocks.

« Layer Dispatch: we can dispatch tokens before a transformer layer

Methodology-MoE-Adapter

| : 1 X
Element-wise adapt . . .
| & product 1 > » Adapter is responsible for processing

| (O Element-wise, all tokens, requiring it to have enough

| add | ." .Q‘ "‘ .
! Nonlinear ! s @ capability

[a 1][(12} [an] * MoE-adapter enhanpes the papabll|ty
\ 4 | o of the adapter with introducing
D negligible computation cost.

Ao
P

Experiment

Table 3: Performance and efficiency comparison on VTAB-1K. “Group Mean” indicates the
averaged accuracy of three groups. “Params. (M)” denotes the number of trainable parameters in
backbones. “FLLOPSs (G)” is the average FLLOPs across all datasets. Bold font and underline denote
the best and the second-best performance respectively.

e Natural e Specialized e Structured
ss & 5 o w 2|22 B g 3RS S8
& 5 5 z 512 5 3 &Y AR § 233 8 8|a & &
£ 2R 2 » T 2|f ¢ ¢4 £l 58 E a8a00|l8 & &
5 5 £ 8 85 5|§ 5 8 §|& &8 5 & 2 2 D18 §
UUDmmmemmmuoﬂMﬁﬁmmOmE}
Traditional methods
Full tuning |68.9 87.7 64.3 97.2 86.9 87.4 38.8(79.7 95.7 84.2 73.9|56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1|68.96 85.80 17.58
Frozen 63.4 85.0 63.2 97.0 86.3 36.6 51.0(78.5 87.5 68.6 74.0|34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2|57.64 0.00 17.58
Parameter-efficient tuning methods
Adapter [32] [69.2 90.1 68.0 98.8 89.9 82.8 54.384.0 94.9 81.9 75.5|80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6/73.85 0.16 17.61
BitFit [86] 72.8 87.059.2 97.5 85.3 59.9 51.4|78.7 91.6 72.9 69.8|61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1{65.21 0.10 17.58
LoRA [33] 67.1 91.4 69.4 98.8 90.4 85.3 54.0|84.9 95.3 84.4 73.6/82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0{74.60 0.29 17.58
VPT [35] 78.8 90.8 65.8 98.0 88.3 78.1 49.6|81.8 96.1 83.4 68.4/68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8(71.96 0.53 18.30
SSF [37] 69.0 92.6 75.1 99.4 91.8 90.2 52.9|87.4 95.9 87.4 75.5|75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9{75.69 0.20 17.58
NOAH [90] [69.6 92.7 70.2 99.1 90.4 86.1 53.7|84.4 95.4 83.9 75.8|82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2(75.48 0.36 17.58"
ConvPass [37] [72.3 91.2 72.2 99.2 90.9 91.3 54.9(84.2 96.1 85.3 75.6/82.3 67.9 51.3 80.0 85.9 53.1 36.4 44.4|76.56 0.33 17.64
AdaptFormer [12](70.8 91.2 70.5 99.1 90.9 86.6 54.8|83.0 95.8 84.4 76.3|81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1|74.75 0.16 17.61
FacT-TT [38] |71.3 89.6 70.7 98.9 91.0 87.8 54.6|85.2 95.5 83.4 75.7|82.0 69.0 49.8 80.0 79.2 48.4 34.2 41.4|75.30 0.04 17.58
Res-Tuning [36] (75.2 92.7 71.9 99.3 91.9 86.7 58.5|86.7 95.6 85.0 74.6/80.2 63.6 50.6 80.2 85.4 55.7 31.9 42.0\76.32 0.51 17.67
The proposed Dynamic Tuning
DyTr=0.5 |73.694.873.099.191.4 87.056.4/87.3 96.1 85.6 76.7|82.8 63.8 52.7 83.7 83.6 57.3 34.6 44.3|77.14 0.16 12.54
DyTr=0.7 |74.495.573.6 99.291.7 87.5 57.4/88.3 96.1 86.7 76.783.5 63.8 52.9 83.1 85.7 54.9 34.3 45.9|77.57 0.16 14.92
DyTr=0.9 |(74.394.973.199.291.4 87.857.1/87.9 96.1 85.9 76.0|83.3 64.8 51.5 83.4 84.0 54.8 35.1 46.4|77.30 0.16 17.07

*

NOAH cost larger than 17.58 FLOPS since it combines PEFT methods via neural architecture search.

Table 4. Comparison of throughput. “VTAB-1K Accuracy 1" denotes the averaged accuracy of
three dataset groups in VTAB-1K [88] benchmark.

VTAB-1K V100 T4 Xeon(R) 8163
Methed Accuracy T FLOBS (0] Throughput (img/s) 1 | Throughput (img/s)t | Throughput (img/s) 1
Full tuning 68.96 17.58 806.24 435.41 2.12
LoRA [33] 74.60 17.58 806.24 435.41 212
AdaptFormer [12] 74.75 17.61 767.30 400.42 1.97
VPT [35] 71.96 18.30 762.55 392.13 1.95
DyT r =0.5 77.14 12.54 912.30 524.93 3.89

Table 5: Comparison with efficient transformers. The throughput is measured on a Tesla V100
GPU. “Params. (M) | ” denotes the number of trainable parameters in backbones.

Method Xiﬁﬁcﬁ FLOPs (G) | | Param. (M) | | Throughput (img/s) 1
DynamicViT [66] 60.10 14.05 88.70 1010.40
DynamicViT+AdaptFormer[12] 75.48 14.23 3.10 954.82
EViT [47] 67.42 11.62 85.80 1233.45
EViT+AdaptFormer[12] 74.63 11.77 0.16 1152.38
Full tuning + ToMe [5] 68.68 13.12 85.80 989.29
AdaptFormer [12] + ToMe [5] 74.30 13.29 0.16 941.70
DyT r = 0.5 77.14 12.54 0.16 912.39
DyT r = 0.5 + ToMe [5] 76.60 9.85 0.16 1114.70

o
o
1

CIFAR-100

)

L. SVHN

% e Food-101
Y 60 [K400

g SSv2

'..% 40 A R 73
2

O 20 00 =2
< ce

0- =
Overall LayerO Layer1 Layer2 Layer3 Layer4 Layer5 Layer6 Layer7 Layer8 Layer9 Layer10Layer11

Figure 5: Token activation rate in different layers. We visualize the token activation rates in
ViT-B/16. “Overall” denotes the mean activation rate in the whole model, which arrives at around
50% when r is set to 0.5. “Layer0” and “Layer11” denote the lowest and highest level, respectively.
Notably, the activation rate in the last layer is exactly 0% on CIFAR-100, SVHN, and K400 datasets.

Layer1 Layer4 Layer7 Layer10

~Layer Layer4 Layer7 Layer10

(a) Deactivate less informative tokens from the sky (b) Tokens from the primary object (boy) are always activated

Figure 6: Visualization of activated tokens. We present two representative samples from the K400
dataset. Blue patches represent the tokens activated in token dispatcher (Detailed in Section 3.2).
Results verify that the token dispatcher has learned to identify informative tokens during fine-tuning.

Thanks

