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Motivation

« Representative PEFT methods do not reduces the computation during inference compared
to full tuning.

« Dynamic networks helps to reduce model inference costs. However, they primarily focus on pre-
training from scratch or full tuning on the same dataset, without considering data domain transfer

 How to develop dynamic modules together with PEFT methods to enhance both parameter and
inference efficiency during ViT adaptation
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Methodology-Dynamic Tuning
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Methodology-Model Variants

Since the impact of skipping tokens in these blocks during the adaptation fine-tuning remains non-trivial
to estimate and has not been explored in previous works, we propose four model variants
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Attn Dispatch MLP Dispatch Attn-MLP Dispatch Layer Dispatch

« Attn Dispatch: Considering the quadratic computational complexity of the Attn block with respect to the toker
numbers, skipping tokens before applying Attn can significantly reduce computation.

« MLP Dispatch: MLP takes ~63.5% FLOPs in ViT-B/16 and propose to skip tokens only before MLP.
« Attention-MLP Dispatch: Skipping tokens before both self-attention and MLP blocks.

« Layer Dispatch: we can dispatch tokens before a transformer layer



Methodology-MoE-Adapter
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Experiment

Table 3: Performance and efficiency comparison on VTAB-1K. “Group Mean” indicates the
averaged accuracy of three groups. “Params. (M)” denotes the number of trainable parameters in
backbones. “FLLOPSs (G)” is the average FLLOPs across all datasets. Bold font and underline denote
the best and the second-best performance respectively.
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Traditional methods
Full tuning  |68.9 87.7 64.3 97.2 86.9 87.4 38.8(79.7 95.7 84.2 73.9|56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1|68.96 85.80 17.58
Frozen 63.4 85.0 63.2 97.0 86.3 36.6 51.0(78.5 87.5 68.6 74.0|34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2|57.64 0.00 17.58
Parameter-efficient tuning methods
Adapter [32] [69.2 90.1 68.0 98.8 89.9 82.8 54.384.0 94.9 81.9 75.5|80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6/73.85 0.16 17.61
BitFit [86] 72.8 87.059.2 97.5 85.3 59.9 51.4|78.7 91.6 72.9 69.8|61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1{65.21 0.10 17.58
LoRA [33] 67.1 91.4 69.4 98.8 90.4 85.3 54.0|84.9 95.3 84.4 73.6/82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0{74.60 0.29 17.58
VPT [35] 78.8 90.8 65.8 98.0 88.3 78.1 49.6|81.8 96.1 83.4 68.4/68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8(71.96 0.53 18.30
SSF [37] 69.0 92.6 75.1 99.4 91.8 90.2 52.9|87.4 95.9 87.4 75.5|75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9{75.69 0.20 17.58
NOAH [90] [69.6 92.7 70.2 99.1 90.4 86.1 53.7|84.4 95.4 83.9 75.8|82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2(75.48 0.36 17.58"
ConvPass [37] [72.3 91.2 72.2 99.2 90.9 91.3 54.9(84.2 96.1 85.3 75.6/82.3 67.9 51.3 80.0 85.9 53.1 36.4 44.4|76.56 0.33 17.64
AdaptFormer [12](70.8 91.2 70.5 99.1 90.9 86.6 54.8|83.0 95.8 84.4 76.3|81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1|74.75 0.16 17.61
FacT-TT [38] |71.3 89.6 70.7 98.9 91.0 87.8 54.6|85.2 95.5 83.4 75.7|82.0 69.0 49.8 80.0 79.2 48.4 34.2 41.4|75.30 0.04 17.58
Res-Tuning [36] (75.2 92.7 71.9 99.3 91.9 86.7 58.5|86.7 95.6 85.0 74.6/80.2 63.6 50.6 80.2 85.4 55.7 31.9 42.0\76.32 0.51 17.67
The proposed Dynamic Tuning
DyTr=0.5 |73.694.873.099.191.4 87.056.4/87.3 96.1 85.6 76.7|82.8 63.8 52.7 83.7 83.6 57.3 34.6 44.3|77.14 0.16 12.54
DyTr=0.7 |74.495.573.6 99.291.7 87.5 57.4/88.3 96.1 86.7 76.783.5 63.8 52.9 83.1 85.7 54.9 34.3 45.9|77.57 0.16 14.92
DyTr=0.9 |(74.394.973.199.291.4 87.857.1/87.9 96.1 85.9 76.0|83.3 64.8 51.5 83.4 84.0 54.8 35.1 46.4|77.30 0.16 17.07

*

NOAH cost larger than 17.58 FLOPS since it combines PEFT methods via neural architecture search.



Table 4. Comparison of throughput. “VTAB-1K Accuracy 1" denotes the averaged accuracy of
three dataset groups in VTAB-1K [88] benchmark.

VTAB-1K V100 T4 Xeon(R) 8163
Methed Accuracy T FLOBS (0] Throughput (img/s) 1 | Throughput (img/s)t | Throughput (img/s) 1
Full tuning 68.96 17.58 806.24 435.41 2.12
LoRA [33] 74.60 17.58 806.24 435.41 212
AdaptFormer [12] 74.75 17.61 767.30 400.42 1.97
VPT [35] 71.96 18.30 762.55 392.13 1.95
DyT r =0.5 77.14 12.54 912.30 524.93 3.89

Table 5: Comparison with efficient transformers. The throughput is measured on a Tesla V100
GPU. “Params. (M) | ” denotes the number of trainable parameters in backbones.

Method Xiﬁﬁcﬁ FLOPs (G) | | Param. (M) | | Throughput (img/s) 1
DynamicViT [66] 60.10 14.05 88.70 1010.40
DynamicViT+AdaptFormer[12] 75.48 14.23 3.10 954.82
EViT [47] 67.42 11.62 85.80 1233.45
EViT+AdaptFormer[12] 74.63 11.77 0.16 1152.38
Full tuning + ToMe [5] 68.68 13.12 85.80 989.29
AdaptFormer [12] + ToMe [5] 74.30 13.29 0.16 941.70
DyT r = 0.5 77.14 12.54 0.16 912.39
DyT r = 0.5 + ToMe [5] 76.60 9.85 0.16 1114.70
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Figure 5: Token activation rate in different layers. We visualize the token activation rates in
ViT-B/16. “Overall” denotes the mean activation rate in the whole model, which arrives at around
50% when r is set to 0.5. “Layer0” and “Layer11” denote the lowest and highest level, respectively.
Notably, the activation rate in the last layer is exactly 0% on CIFAR-100, SVHN, and K400 datasets.
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(a) Deactivate less informative tokens from the sky (b) Tokens from the primary object (boy) are always activated

Figure 6: Visualization of activated tokens. We present two representative samples from the K400
dataset. Blue patches represent the tokens activated in token dispatcher (Detailed in Section 3.2).
Results verify that the token dispatcher has learned to identify informative tokens during fine-tuning.
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