Esgse;;wgsvsmz UG SANTA CRUL | =3 B ineering

N

Large Language Model Unlearning via
Embedding-Corrupted Prompts

Chris Yuhao Liu, YaxuanWang, Jeffrey Flanigan, YangLiu

University of California, Santa Cruz

NeurlPS 2024
https://chrisliu298.ai/llm-unlearn-eco-neurips24



https://chrisliu298.ai/llm-unlearn-eco-neurips24

Motivation

e Asof today, there are already 130+ papers on large language model unlearning.
o https://github.com/chrisliu298/awesome-lim-unlearning
e Most existing LLM unlearning methods rely on:

o Gradient ascent

o Model editing

o Activation steering
O
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Motivation

e |nfeasible and expensive to use on large models like GPT-4, Claude, Gemini, etc.

Small open-weight models Model-as-a-service (MaaS) )¢
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Motivation

e Canwedesign asimpler and more efficient method to achieve unlearning for
(close-weight) MaaS?
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Motivation

e Canwedesign asimpler and more efficient method to achieve unlearning for
(close-weight) MaaS?

Model-as-a-service (Maa$)

YES!



An Intriguing Phenomenon of LLM Under Corrupted Input

e [f we corrupt the prompt (in embedding space), the model behaves as if it
doesn't know the answer.
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An Intriguing Phenomenon of LLM Under Corrupted Input

e [f we corrupt the prompt (in embedding space), the model behaves as if it
doesn't know the answer.
e Example prompt and response:

Who teaches Defense In Harry's first year, Professor
Against the Dark Arts in LLM Quirrell teaches Defense
Harry's first year? Against the Dark Arts.




An Intriguing Phenomenon of LLM Under Corrupted Input

e [f we corrupt the prompt (in embedding space), the model behaves as if it
doesn't know the answer.
e Example prompt and response:

Who teaches Defense In Harry's first year, Professor
Against the Dark Arts in LLM Quirrell teaches Defense
Harry's first year? Against the Dark Arts.
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information of Harry's first
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An Intriguing Phenomenon of LLM Under Corrupted Input

e [f we corrupt the prompt (in embedding space), the model behaves as if it
doesn't know the answer.
e Example prompt and response:

Who teaches Defense In Harry's first year, Professor
Against the Dark Arts in LLM Quirrell teaches Defense
Harry's first year? Against the Dark Arts.
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provide you with the personal
information of Harry's first
year.

How can we leverage this?



Step 1: Unlearn using a prompt classifier guardrail
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Step 2: Corrupt prompt tokens in embedding space

,-{ Unlearned with Embedding-COrrupted (ECO) Prompts }

Prompt

Step 1
»| | Prompt 1

E] Original embedding

lassifier (Forget) J

ﬂ|Ste 2}

Corruption cor'r'upt([- . .]

function

[ [e,0,1,1,1,0] ],0‘)

4 11

Embedding- 2 I i
corrupted |o €21 1€s) 1€a;
prompts a2 B B

| Who || is ”Harr‘y“Pother'lEl

Train classifier offline

1.Who wrote

Harry
Potter?

2. Explain
machine

unlearning.
3. e

Update classifier

Add noise to specific tokens in
embedding space

'_e_, Corrupted embedding




Step 2: Corrupt prompt tokens in embedding space
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Benefits and Limitations

Pros

e Scalable to any model size
e No fine-tuning required
e Achieves nearly perfect unlearning on some datasets



Benefits and Limitations

Pros

e Scalable to any model size
e No fine-tuning required
e Achieves nearly perfect unlearning on some datasets

Cons

e Does not work for open-weight models
e Relies on astrong classifier



Experiments

Datasets

e WMDP (Lietal. 2024): unlearn hazardous knowledge
e Book and news: unlearn copyrighted content
e TOFU (Mainiet al. 2024): unlearn fictitious author biography



Main Results

1. Extensive experiments on 100 LLMs ranging from 0.5B to 236B
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1. Extensive experiments on 100 LLMs ranging from 0.5B to 236B
2. Achieves high output similarity to a retained model*, mimicking the perfectly
unlearned model

*A retained model is a model that has not been trained on the forget data.



Main Results

1. Extensive experiments on 100 LLMs ranging from 0.5B to 236B
2. Achieves high output similarity to a retained model*, mimicking the perfectly

unlearned model
3. Excels at tasks that involve unlearning and retaining knowledge in similar

domains

*A retained model is a model that has not been trained on the forget data.



Hazardous Knowledge Unlearning on WMDP
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Copyrighted Unlearning on Book and News
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Biography Unlearning on TOFU
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Conclusion

e Asimple way to achieve unlearning for Maa$S
e Scalable to any model size with no additional compute
e Ensureunlearning while largely preserve original performance on benign tasks

Model-as-a-service (MaaS$) ["4
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Future Work

e Whydoesitwork?
o (We provide a simple hypothesis in the appendix of paper.)

e Adapt to open-weight LLMs without the need of a classifier



