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Problem: Spurious correlations reduce
generalization on minority groups

« Datasets often suffer from spurious correlations which are
predictive but irrelevant for the classification task

 ERM neural networks overfit to spurious correlations and hence
perform poorly on minority groups [1]

« Goal: Improve robustness by maximizing worst-group test
accuracy (WGA) rather than average performance
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Prior Work: Class-balancing can improve WGA
without any group annotations

« Best way to improve WGA is group-balancing, but this requires
expensive group annotations or pseudo-labeling model

« On the other hand, class-balancing was found to be a simple yet
effective method for improving robustness [2]

« We study 3 popular class-balancing techniques and show despite
theoretical equivalence, they have different empirical behavior
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« Subsetting: set all classes to
the same size as the smallest
class by removing data from
larger classes uniformly
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 Upsampling: use the entire
dataset for training but adjust
class sampling probabilities
so that SGD mini-batches are
class-balanced in expectation

 Upweighting: use the entire
dataset for training but
upweight minority class
samples in the loss function
by the class-imbalance ratio
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Our contributions

« We identify new failure modes of class-balancing: upsampling and
upweighting experience catastrophic collapse without extensive tuning

* We show model scaling is beneficial for WGA only in conjunction with
appropriate class-balancing—and scaling can even harm robustness

 Even when classes are balanced, we uncover a spectral imbalance in
the group covariance matrices which may modulate WGA

Finding: Class-balanced upsampling and
upweighting overfit minority group over training

 Upsampling and upweighting experience catastrophic collapse over
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long training runs; convergent WGA is no better than ERM
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 We also show a new disadvantage of subsetting: can greatly harm
group accuracy on minority groups within majority class (Waterbirds)
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« Behavior is caused by overfitting to highly-weighted minority group 55
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samples; contrary to theoretical equivalence in population setting s
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Proposal: Mixture balancing rectifies collapse
by interpolating subsetting and upsampling

« Our goal is to increase exposure to majority class data without
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Finding: Model scaling benefits WGA only In
conjunction with appropriate class-balancing

* Previous work showed that model scaling typically does not hurt
robustness: we argue their conclusions are overly pessimistic [3]

 We show that using the right class-balancing technique can greatly
improve robustness during scaling from 3M to 100M+ parameters

« On the other hand, using the wrong class-balancing technique can
catastrophically collapse WGA in large models (CivilComments)

« Takeaway for practitioners: realistic language datasets are not
interpolated at any scale (MultiNLI) so scaling is key for robustness

—— No class-balancing = Upsampling Subsetting - Upweighting = Mixture == Interpolation Threshold
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Analysis: Limits of class-balancing explained by
spectral imbalance in the group covariances

« Class-balancing does not improve WGA as much as more targeted
methods, but isolates contribution of group imbalance alone

« Can we analyze sources of group disparities after class-balancing?

 We show group disparities exist in class-balanced covariance matrices:
minority groups have larger eigenvalues conditioned on class
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Group g covariance for features z:

oversampling the minority class .
 We propose mixture balancing, which first takes an imbalanced
subset of the original dataset, then runs upsampling on the subset
« Essentially interpolates subsetting and upsampling: achieves the :
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