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Background

e Traditional large language models fail to support lifelong conversations.
e (Conversational LLMs with context comprehension, memory, and

efficiency are gaining attention.
e Multi-turn dialogue LLMs like ChatGPT and MOSS are being released

to wide acclaim.

Research on memory-capable streaming dialogue generation
can lead to improved user experiences.



Challenges

e Fixed context length during pre-training restricts generation length.
e Standard attention complexity grows quadratically, increasing computational costs.

e [ ocal attention leads to loss of dialogue memory and inconsistent context.

End-of-Utterance (EOU) often attracts more attention.
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Figure 1: Attention map visualization. (a) Llama-2-7B/Chat with “</s>" and “\n” as EoU (“</s>”
counts as one token, ‘“\n” as two). (b) StreamingLLLM versus StreamingDialogue attention on Llama-
2-7B with “</s>" as EoU.
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Figure 2: StreamingDialogue framework. SMR & LMR strategies co-train the model by adjusting
attention mechanisms. In supervised learning, the SMR & LMR-trained model is fine-tuned with
dialogue datasets. During inference, only specific tokens are cached, with critical historical dialogue

information in bold italics for clarity.
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Task - Dialogue

Inference
<s> Hello! </s>
Morning! </s>

Thinking of starting a new
fitness routine. </s>

What kind of workouts
are you into? </s>
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Oh, right! How's your cardio
and strength training going?</s>

Not bad. added some HIIT
workouts. And you? </s>
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Method

1. Short-memory Reconstruction
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We design a dialogue reconstruction task aims at recreating dialogues based on
EOUs after each sentence to enhance the EOUs' ability to aggregate information.



Method

2. Long-memory Reactivation
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We design a dialogue recall task that aims to recall and reproduce previously
mentioned dialogues, enhancing the model's ability to extract historical information
from EOUs and thereby improving long-term memory capabilities.
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3. Supervised Learning
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We compress sentence information into corresponding EOUs. For dialogue generation,
we retain only the first token, all EOUs, and the two most recent sentences. This task 1s
used to train LLMs through supervised learning to adapt to replacing full dialogues with
EOUs, ensuring coherent and consistent dialogue generation.
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Figure 10: Attention maps’ visualization of StreamingDialogue and various other methods. In
a dialogue with 7' utterances, each averaging L tokens, dense attention caches 7'L tokens, local
attention caches R tokens (where R is the window size), Big Bird caches global size + random size
+ R tokens, StreamingLLLM caches R + 1 tokens, and StreamingDialogue requires caching up to
1+ T + 2L tokens.

Compared to other
attention-based
methods, our
method not only
retains historical
information but
also stores only a
few tokens to
increase speed and
save resources.



Experimental Results

Table 1: Main results on the PersonaChat and MSC datasets. | indicates lower values are better, while
T indicates the opposite. The best result for each metric is presented in bold, while the second-best
one is underlined. * indicates significance (p < 0.05) via pairwise ¢-test compared to other methods.
“PC” denotes PersonaChat and “StrLLM” represents Streamingl.L.M.

- PPL BLEU (%) ROUGE (%) Distinct (%) USL-H (%) Dial-M
Dat:  Method Il B-avgt B-1t B2%t RIf R2%t RLt D11 D21 D31% 1 !
Dense 8.41% 13.15 49.30%  20.05%  13.98 3.07 13.44 16.37%  41.61*  63.36* 14.21% 2.38%
Local 11.59% 13.01 50.78 20.13% 13.83 2.69 13.29 12.49%  32.17#  51.12* 17.35% 2.07
PC Big Bird 9.00%* 12.93*  50.00%  20.52% 13.78 2.64 13.33 11.83*  32.46*  52.17* 16.95% 2.37%
StrLLM 8.96 13.16 50.15 20.68 13.94 2.73 13.36 12.00%  32.64*  52.36* 17.63* 2.30%
MemBART  13.15% 11.18%  46.63* 17.65% 13.11 2.56 12.78 12.86%  30.87*  48.86% 12.23% 2.49%
Ours 8.71 13.63 51.27 20.77 13.96 3.05 13.43 14.43 37.23 58.07 17.96 2.10
Dense 7.58 19.47 52.22 28.41 16.93 292 15.48 12.85%  37.75%  57.51% 90.11%* 1.94%
Local 8.92# 13.34*  41.14%  20.44%* 13.48* 1.88* 12.61* 7.89% 22.71%  35.89% 76.68% 2.15%
MSC Big Bird 8.42% 16.54*  46.63*  24.77% 15.32% 234 14.15% 8.72% 25.81%  40.34% 85.30* 1.72
StrLLM 8.38* 16.76%  47.54%*  25.08% 15.25%  2.44* 14.21%* 9.18* 26.93%  41.62% 86.91% 1.71
MemBART  13.73* 17.11*  49.78%  25.82% 14.93*% 261 13.76% 10.86%  30.55%  47.37* 85.13* 1.97*
Ours 7.99 19.33 51.49 28.12 17.18 277 15.86 11.54 32.58 50.27 90.48 1.76
Session 1 59894 14.16 6572 15.47
Table 5: Details of dialogue datasets. We present the number of utterances (Utts.) and the average ges-ﬁon g jg‘gg g;-gg gggz gggg
9 H H int €Ss10n ¥ 5
length per utterance (Avg. L) for each session in the training and test sets. MSC Sessiond 11870 3225 5940 3467
— - Session 5 = : 5945 3643
2 o rain es| Total 165443  25.66 30320  29.77
Bzt BasType Utts. Avg. L Utts. Avg. L = e
Topical-Chat Total 188378  26.76 11760  26.98
PersonaChat Total 122499 13.59 14602 13.85

MultiwOZ Total 113552 1892 14744  19.23




Experimental Results

Method B-avg? R-11 R-21 D-11 D-21 USL-H? Dial-M]
StreamingLLM 1676 1525 244  9.18 2693  86.91 1.71
HRED 1572 1475 185 737 2091 5870 2.13
VHRED 1702 15.16 148 528 1472 5931 2.35
Ours 1933 17.18 277 11.54 3258  90.48 1.76

Table 7: Results of the C score on the PersonaChat dataset. 1 indicates higher values are better.

Method Dense Local BigBird StreamingLLM MemBART  Ours

C%) 1 310 -340  -4.00 470 0.77 2.70

Data Method PPL| ROUGE-1T ROUGE-27 ROUGE-L1 Dial-M |
Dense 9.49 15.70 3.65 14.88 3.09
Local 27.55 12.60 2.09 10.37 7.02
Tomical.Chat  Big Bird 10.36 1421 3.55 11.79 3.01
P StreamingLLM  10.34 14.25 3.55 11.84 3.05
MemBART 12.54 13.86 2.98 13.18 2.83
Ours 9.80 15.46 3.99 14.37 2.66
Dense 451 24.79 13.93 24.67 2.27
Local 5.38 24.26 13.47 24.15 2.45
. Big Bird 479 2438 13.26 24.30 251
MuliWOZ  gucaminglIM 476 23.66 13.09 23.41 2.47
MemBART 5.36 20.05 12.41 19.94 2.37

Ours 4.34 25.26 14.27 25.20 2.25




Experimental Results

Win Tie Loss
Fluency 34% 35% 31%
Coherence 41% 22% 37%
Consistency 44% 27% 299,

Figure 3: Fluency, coherence, and consistency in human evaluations: ours vs StreamingLLLM.

Table 2: Ablation results on MSC with different learning strategies. “Base” denotes the model
fine-tuned without SMR and LMR learning.

Model PPL BLEU-avg ROUGE-L Distinct-3

Ours 7.99 19.33 15.86 50.27
Base 8.21 17.32 10.25 46.15
LMR 8.01 18.87 15.66 49.44
SMR 8.40 18.25 15.24 48.57

Table 3: Results under the non-training setting on the MSC test set.

Model Method BLEU-avg BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 ROUGE-L
, , StreamingLLM ___ 20.16 SIIS  29.99 15.90 1.92 14.26
Llama-2-7B-Chat 5, 20.19 5155 3003 16.46 211 15.00
lma -8B nsue | Streamingl LM 16.48 3068 24.63 16.88 1.93 15.47
ama->-eB-Instruct o, g 16.77 40.10 24.88 17.11 2.01 15.85
StreamingLLM 1275 4286 19.99 12.58 1.83 11.73

NISHSIE Ours 1333 4408 2065 1340 1.98 12.58




Experimental Results
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Figure 4: Average perplexity and BLEU for  Figure 5: Per-token latency and memory usage
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Figure 6: The perplexity for StreamingDialogue under the concatenated MSC test set, evaluating
approximately 25K tokens.



Experimental Results
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Figure 7: Comparison of attention maps before and after learning. “Base” denotes Llama-2-7B, while
“SMR & LMR” represents the model obtained post co-training with SMR and LMR on Llama-2-7B.
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Table 4: Dialogue reconstruction performance. £ 02 £ 02!
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Figure 9: Normalized performance scores

(PPL, B-avg, R-L, and D-3) on MSC for var-
1ous [ with s fixed at 28 and various s with [
fixed at 24.




Experimental Results

Conversation History

11 utterance:

Do you live in the states? I live in california..

I just saw the greatest sunset so far this year. I know you like movies more
than sunsets, but I heard there are supposed to be some great sunsets this
week and I figured 1 should let you know that there may be some great ones.

I do like movies quite a bit, but I don't mind sunsets at all. After all,
there are great sunsets where I live in California. Sometimes, you'll
have the entire evening sky in shades of orange and violet. It's stunning.

43 utteranm-{

I enjoy foods like Spam musubi, loco mocos, and poi. My favorite might be
kalua pork. The way they prepare the pig makes it taste so good.

1 Generate

T've never heard of any of those dishes, but I'm sure I'll be
able to find them on the menu.

I've never heard of any of those dishes, but I'm sure I'll
love them. I'm excited to try new things. I'm sure I'll be StreamingDialogue
able to find some good Hawaiian food in California.

StreamingL. LM

Figure 8: The generated dialogues by
Streamingl.ILM and StreamingDialogue for
the same input dialogue history from an MSC
episode, with an average utterance length of
L = 32 tokens. Bold italic indicates key in-
formation in the dialogue.
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Experimental Results

Table 11: The results of integrating the belief states on the MultiWOZ dataset.

Method PPL BLEU-avg BLEU-1 BLEU-2 Distinct-1 Distinct-2  Distinct-3
Dense 1.92 25.56 48.33 29.14 3.74 6.86 8.89
StreamingLLM  2.19 25.70 47.53 29.21 448 9.09 12.60
Ours 1.98 25.77 48.58 29.38 5.30 10.03 13.60

Table 12: Results on the Topical-Chat and Persona-Chat datasets under the setting of treating each
sentence of the grounding knowledge/persona profiles as an utterance.

Data Method PPL Distinct-2  Distinct-3  Dial-M
Dense 7.19 43.56 66.27 2:53

PersonaChat  StreamingLILM  8.36 33.17 53.58 247
Ours 7.60 39.16 61.06 2.36
Dense 3.24 39.07 57.64 4.32

Topical-Chat ~ StreamingLLM  8.31 16.87 23.56 3.72
Ours 3.20 31.47 49.10 2:57

Table 13: Results on the Topical-Chat and Persona-Chat datasets under the setting of treating the
grounding knowledge/persona profiles as a prompt.

Data Method PPL Distinct-2  Distinct-3  Dial-M
Dense 7.93 44.26 66.63 2.48

PersonaChat  StreamingLLM  7.99 36.40 57.44 291
Ours 7.67 37.82 58.93 2.57
Dense 11.64 36.98 54.96 4.60

Topical-Chat ~ StreamingLLM  30.37 26.07 34.26 3.61

Ours 10.21 32.16 50.41 291




Experimental Results

Analysis of EoU tokens’ information aggregation capability

Examples of prompt formats are as follows, where the “keywords™ will be replaced with specific
content.

1. “template”: “A and B went to PLACE today.</s>They had a great time.</s>Who did A go
to PLACE with today?7</s>",
“keywords™: “A”: “person”, “B”": “person”, “PLACE": “place”,
“answer key™: “B”

2. “template’: “B made A’s favorite food, FOOD, today.</s>A was delighted.</s>What food
did B make for A today?</s>",
“keywords™: “A”: “person”, “B”": “person”, “FOOD"”: “food”,
“answer key”: “FOOD”

3. “template™: “A was doing ACTIVITY when B called.</s>A had to stop and answer the
call.</s>What was A doing when B called?</s>",
“keywords™: “A”: “person”, “B’": “person”, “ACTIVITY"": “activity”,
“answer key™: “ACTIVITY”

4. “template™: “A bought a new ITEM today.</s>B was impressed by A’s purchase.</s>What
item did A buy today?</s>",
“keywords™: “A”: “person”, “B”": “person”, “ITEM™: “item”,
“answer key™: “ITEM”

5. “template™: “A participated in an EVENT today.</s>B cheered them on.</s>What event did
A participate in?</s>",
“keywords™: “A”: “person”, “B’": “person”, “EVENT": “event”,
“answer key”: “EVENT”

Accuracy: 68%
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