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TL;DR

Predictive coding inference seems to make the loss
landscape of feedforward neural networks more
benign and robust to vanishing gradients.
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Introduction: predictive coding

® Predictive coding (PC) is a brain-inspired learning algorithm that can train
deep neural networks (DNNs) as an alternative to backpropagation (BP)
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¢ However, these speed-ups are not always
observed, and the impact of PC inference on
learning is not theoretically well understood -
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Introduction: approach

® To address this gap, we study the geometry of the effective landscape
on which PC learns: the weight landscape at the equilibrium of the
network activities

e We focus on saddle points of the equilibrated energy \
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Introduction: saddles & neural networks
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® Saddles are ubiquitous in the loss landscape of DNNs [Dauphin et al. "14]

® They have been characterised as [e.g. Get et al. "15]:
i) “Strict”, with negative curvature (indefinite Hessian), or

ii) “Non-strict”, where an escape (negative) direction is found in higher-order (n>2) derivatives

® Stochastic gradient descent (SGD) can be exponentially slowed by strict saddles [Du et
al. ”17] and effectively get stuck in non-strict ones [e.g. Bottcher & Wheeler "24]
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® (This is vanishing gradients from a landscape perspective [Orvieto et al. "22].) %] /3\




Introduction: contributions

e For DLNSs, we first show that, at the equilibrium of the network activities, the PC energy is
equal to a rescaled mean squared error (MSE) loss with a weight-dependent rescaling

e We then prove that many highly degenerate (non-strict) saddles of the loss become much
easier to escape (strict) in the equilibrated energy

e We empirically verify that our linear theory holds for non-linear networks

e We provide evidence that other non-strict saddles of the loss that we do not address
theoretically also become strict in the equilibrated energy
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Preliminaries

N
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® MSE loss for DLNSs: L = ﬁ Z Hyz — VVL:lx'iH2
1=
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® PC energy for DLNs: F = ﬁ Zl EZI HZg,i — Wézf—l,in
1= p—

¢ Minimised in 2 phases:

Inference: Azy gz}; Learning: AW/, 88'\:;6 % % % %

® In practice, inference is run to convergence until Az, ~ 0 before updating the weights

¢ Importantly, the effective landscape on which PC learns is the energy at the inference
equilibrium F|5r/52=0(6) which we will abbreviate as F*(0)
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Theoretical results: equilibrated energy as rescaled MSE

® At the inference equilibrium, the PC energy turns out to be equal to a rescaled MSE loss

Theorem 1 (Equilibrated energy for DLNs). For any DLN parameterised by 0 =
(W1, ..., W) with input and output (X;,y;), the PC energy (Eq. 2) at the exact infer-
ence equilibrium OF /0z = 0 is the following rescaled MSE loss (see § for derivation)
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where the rescaling is S =14, + S (W) (Wre)T.




Theoretical results: equilibrated energy as rescaled MSE
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Theoretical results: saddle analysis

¢ Many highly degenerate (non-strict) saddles of the MSE loss become much easier to
escape (strict) in the equilibrated energy

Theorem 3 (Strictness of zero-rank saddles of the equilibrated energy). Consider the set
of critical points of the equilibrated energy (Eq. 5) 0" (W = 0,W_1.1 = 0) where
gr+(0™) = 0. The Hessian at these points has at least one negative eigenvalue (see §

for proof)

IN(Hx+(0%)) < 0 [strict saddles, Def. |] (10)

® These saddles include the origin, effectively making PC more robust to vanishing gradients



Theoretical results: saddle analysis

¢ Toy examples illustrating the result for the origin saddle
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Experiments: what about non-linear networks?

¢ To test the theory, we train various networks on standard datasets by initialising close to

the considered saddles (e.g. origin)

e We find that, for the same learning
rate, SGD on the equilibrated

energy (PC) escapes much faster
than on the loss (BP)
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Experiments: what about other saddles?

¢ To test other non-strict saddles of the loss that we do not address theoretically, we train
networks on a matrix completion task, where we know that starting near origin GD
goes through these other saddles
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Conclusion

¢ Summary: we provided theoretical and empirical evidence that the effective landscape
on which PC learns has only strict saddles and is more robust to vanishing gradients

® Conjecture: all the saddles of the equilibrated energy are strict

® Conclusion: our work suggests that PC inference makes the loss landscape of
feedforward neural networks more benign or easier to navigate

¢ Limitation: inference convergence significantly slows down with network depth and
remains a key challenge for scaling PC to large tasks
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