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Problem
Definition

* Autonomous agents often fail in
unseen environments.

* To train an agent robust to
environmental changes, we focus on
generating adversarial environments
in which the agent will be trained.
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Unsupervised Environment Design (UED)

(. )  UED is a framework designed to find a minimax
“/ b " ﬂ. regret policy ™ that is robust to the variations in
— J h"‘ the environment 9.

.

7% € argmin max REGRET(, f)
well 966
Results l I Environments REGRET(7, 0) := —V (7, 0) + 1’1}2%( V(n',8)
* To obtain ™, UED solves the following min-max

problem:

min max REGRET(w.
“ mell 8cE ( )

Generator
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Unsupervised Environment Design (UED)

a ~ h * Prior works on UED
’A b ﬂ. = train an environment generator via reinforcement
— J Q"‘ learning.
S » Stability | /Sample efficiency

= replay among randomly generated environments with
high regrets.
» Stability 7 /Sample efficiency |
Results Environments
* We propose a method which takes the advantages

of two approaches by leveraging the power of the
diffusion model.

Aﬂ

Generator
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Soft UED

* We augment the UED objective to ensure the diversity of the training
environments and enhance the stability.

_ 1 N
min max [E [REGRET(m, 6)] + —H(A) A: distribution over a set of
mell AeDp oA w environment parameter

* The modified min-max problem has a valid optimal point.

Proposition 4.1. Let L{m, A) := Eg..n [REGRET(7,8)| + = H(A) and assume that S, A, and © are
finite. Then, min max L(m, A) = max min L{m, A).
mell AeDy AeDy mell
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Regret-Guided Diffusion Models

* The soft UED converts the problem of finding regret-maximizing 6 into the problem of
sampling 6 from the following distribution:

u(@) exp(wREGRET (ﬂ-’ 9)) u(-): uniform distribution

' C™: normalizing constant
w. guidance weight

AT () =

* Then, we solve this sampling problem using guided diffusion:
Vgt 10g A?(Qt) = V(}t log Ut(gt) + wVQtREGRETt (ﬂ', Qt)
Sg (Qty t) = S¢(9t, t) —|— LvatREGRETt(’?T7 Qt);

d@t: ,8 |: Qt—|—8¢ Qt? ]dt—F\/ th

. . pre-train a diffusion model, . estimate regret in a differentiable form
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* Prior works estimate the regret in a non-differentiable form.

* We utilize an environment critic 7y, which predicts a distribution of return.

Probability ,

M—-1

Z.(0;,1) = Z softmax; (7, (0, t))d2,

=0

REGRET;(0;,1) &~ CVaR, (2. (0, 1)) — E(Z. (04, 1))
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ZoZ1 ...

ZM-1  Return

mean CVaR
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Overview: ADD

o r\ :
SO

Environments

Episodic results

)

Environment critic

Regret guidance

Diffusion-based environment generator
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Overview: ADD

* No additional training of the generator

Vas L
J ﬁ » Stability 1

Episodic results Environments

Eviromment critic ﬁ E ! . * Effectively combines the strengths of

Diffusion-based environment generator

* Directly generates training environments
Regret guidance > Sample efficiency T
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Experiments

e Evaluation

e Zero-shot transfer performance
* Generated curriculum

e Tasks
= Minigrid

= BipedalWalker
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Minigrid Results

Test environments Results
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Minigrid Results

Generated training environments

=
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BipedalWalker Results

Test environments Results
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BipedalWalker Results

Generated training environments

innnndibble Saes.dbaiing Bah.oes. LM el
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Controlling Difficulty Levels

e Additionally, our method can control the difficulty level of environments it generates
$ly(00,t) = 54(01,) + WV, log Pr(Z (0, 1) = 2ar_4),

d@t: 6 [ 9;5"—8(;5 Qt, ]dtJr\/ith
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Controlling Difficulty Levels
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Thank you for your attention

If you have any questions, please contact hojun.chung@rllab.snu.ac.kr
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