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The Paradigm of Diffusion Models

 Diffusion model: Forward and reverse process.

* The general forward process:
dX, = f(X, t)dt + g(t)dB;, Xy ~ qo € R?

 Two common forward processes:

(1) Variance Preserving (VP): f (X, t) = —%Xt,g(t) =1

(2) Variance Exploding (VE): f (X, t) = 0,g(t) = \/datz/dt



The Reverse Process

* Reverse the forward process — Reverse process

1+

2
T g%(£)Vy log q; (X) | dt +1g()dBe,n € [0,1]

Xt — [f(Xt; t) _
*n = 1 — Reverse SDE (Stochastic sampler)

n = 0 — Reverse probability flow ODE (PFODE, deterministic sampler)

Forward SDE: Data — Noise
dX; = f(Xg, t)dt + g(t)dB;

Xo ~ qo ~
X, € R ﬁ Xr~qr
k

K k+1 Vi
9o = N(0,07)

pIK

2
S, dX, = |[F(X, t) — =5 g?(t)Vx, log q. (X,)| dt +1g(t)dBe,n € [0,1]
¥

Score Function: sg(X;,t)
Reverse SDE / ODE: Data « Noise

Early stopping parameter 6



The Current Sample Complexity Results

Many works assume an accurate enough score function
”lOg Qt(X: t) — Sg (X: t)”% < Eszcore

and analyze the sample complexity K = (T — §)/yx to guarantee DiS(ptK, qo) <€

* \VP-based models is well-studies and require weakly bounded support assumption

1

(a)Reverse SDE: — ! — result [1] (b) Reverse PFODE: — [2]

W, TV €w, €TV

* VE-based models lacks of analysis and require strong assumption

1
(a)Reverse SDE: o result under the log-Sobelev inequality (LSI) [3]
Wo=TV

(b) Reverse PFODE: Lack



Motivations

* Variance exploding (VE)-based diffusion model has great performance.

* The sample complexity of VE-based models is larger than variance preserving
(VP) based models.

What is the source of large sample complexity of VE-based Models?



A General Convergence Guarantee (Reverse SDE)

Theorem 1. Under the bounded support assumption (weaker than LSI), for
VP and VE-based models

— ?
D\/mT RZ\/E _ o~
TV(ptK: CIO) < o7 + o \/VKO-TZ"TQZ(T) + €scorev 92 (T)T < O(ery)
ol
Reverse Beginning Error Discretization Approximated Score

Forward Convergence Rate

TV(N(0,07),q1)

e Balance: (a) T determined by the first term and (b) discretization part depends on T
* VP enjoy an exponential-decay firsttermm; = e T and o = 1 -

A logarithmic T = log(1/e7y)

* VE has a polynomial-decay one my = 1 and 67 = poly(T) -

Large sample complexity



Core Contribution 1: Drifted VESDE

Intuition: Lacks of the drift term f(X;,t) — Slow forward convergence rate—

Large sample complexity

Solution Introduce a drift term to VESDE: Drifted VESDE

dX, = —% B.X,dt + \/2B,dB, where T € [1,T?], B; € [1, t?]

* Drifted VESDE covers class forward processes

* Go beyond: With an aggressive f; (e.g. T = T? and B, = t?),

Drifted VESDE balances different error terms



Drifted VESDE Balances Different Error Term

Corollary 1. For drifted VESDE (t = T*) with B, = t?, it enjoys e ™" forward
convergence guarantee. Assume €..o. < O(€7y), the sample complexity is

K < 5(1/(63,2 e2,))

* This result is the same with VP-based models.

* Due to the logarithmic T, different from the high order requirement
Escore < €4, of pure VESDE, €00 has the same order with ey .



Contribution 2: The Guarantee for VE with PFODE

* The unified tangent-based framework (Control of high order of score)

R* 1-—n* (g%
||VYO,tK||Sexp<52+ > jo . du>

2
* For VP forward process, fOtKga(f)
T

du =T — exp(T) term

e For VE forward process, g?(t) = t and 02 = T? — Constant term

Theorem 2. Under the bounded support and ground-truth score assumption,
for VE with PFODE

D.mr

Wl(pth qo) <

1
+ exp <ﬁ) Poly(T)\/ﬁ

T



Real-world Experiments

(b) Driftd VESDE (More Examples)
e Setting:t =T, B; =1

* Conservative Drifted VESDE Benefits from VESDE without Training:
More detail such as hair and beard details

10



Conclusion

* (Reverse SDE) Drifted VESDE: balance error terms and improve the results

* (Reverse PFODE) The Exploding property of VE: The first quantitative

convergence guarantee without exp(T)

e Furture work

* Polynomial Sample Complexity for VE with PFODE



Thanks!
Q&A
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