
A scalable generative model for 
dynamical system reconstruction 

from neuroimaging data
Eric Volkmann1,2,*, Alena Brändle1,3,*, Daniel Durstewitz1,3, †, Georiga Koppe3, †

1Department of Theoretical Neuroscience, Central Institute of Mental Health (CIMH)

2Institute for Machine Learning, JKU Linz

3Interdisciplinary Center for Scientific Computing, Heidelberg University



Dynamical Systems Reconstruction (DSR)
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Generalized Teacher Forcing (GTF)1

Interpolate between forward-iterated states 𝑧𝑡 and data-inferred states Ƹ𝑧𝑡 = 𝐺𝜙
−1(𝑥𝑡):

ǁ𝑧𝑡 = 𝐹𝜃 1 − 𝛼 𝑧𝑡−1 + 𝛼 Ƹ𝑧𝑡−1 , 𝛼 ∈ 0,1

 optimal choice of 𝛼 prevents EGP

1Hess et al, ICML 2023, Generalized teacher forcing for learning chaotic dynamics



DSR for convolved time series
Important empirical setting: observations are a convolution of signal of 

interest 𝑓 and a impulse response filter ℎ
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Example: fMRI

• Signal of interest: neuronal activity

• Impulse response: hemodynamic 
response function (ℎ𝑟𝑓)



ConvSSM

• Modified observation equation

• Latent states are convolved over time with filter function ℎ

ො𝑥𝑡 = 𝑮𝝓 ℎ ∗ 𝑧 𝑡0:𝑡



ConvSSM

• Modified observation equation

• Latent states are convolved over time with filter function ℎ

• Problem: non-invertible observation model

How to calculate forcing targets at 𝑡 for GTF? 

ො𝑥𝑡 = 𝑮𝝓 ℎ ∗ 𝑧 𝑡0:𝑡



Deconvolution approach for fMRI time series motivated by Wu et al. (2021)

ConvSSM

Wiener deconvolution filter 𝐺(𝑘) =
෨𝑌∗ 𝑘 𝐻 𝑘

| ෨𝑌 𝑘 |2𝐻 𝑘 +෩𝑁(𝑘)

Wu et al, NeuroImage 2021, A toolbox for resting-state HRF estimation and deconvolution



1. Obtain estimate of the signal ෤𝑦 and of noise ෤𝑛 using Wavelet 
based methods
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1. Obtain estimate of the signal ෤𝑦 and of noise ෤𝑛 using Wavelet 
based methods

2. Use the power spectra of these estimates ෨𝑌, ෩𝑁 to compute 𝐺

3. Apply Wiener Deconvolution to obtain estimate of deconvoluted
signal ෤𝑥

4. Use estimate ෤𝑥 in Teacher Forcing Algorithm

Deconvolution approach for fMRI time series motivated by Wu et al. (2021)
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Train state space model
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Validation on Lorenz63 system

Distribution of learned 𝜆𝑚𝑎𝑥values with/without GTF



ALN: Simulated fMRI data

Key finding: ConvSSM improves latent space reconstruction

Distribution of reconstruction measure in obervation and in latent space



ALN: Simulated fMRI data

Key finding: We can identify a successful DSR model using our measures

on short time series

Correlation of DSR measures evaluted on short vs long testing time series



ALN: Simulated fMRI data

Key finding: Consistent DSR measures in observation and latent space for ConvSSM

Correlation of DSR measures evaluted in oberserved vs in latent space for ConvSSM



Key findings: ConvSSM outperforms other methods in DSR performance

Application to experimental fMRI data



Application to experimental fMRI data

Outlook: Classification and Regression using DS features identified by ConvSSM

Key findings:
• positive 𝜆𝑚𝑎𝑥, indicating chaotic attractors

• Reliably Inferred 𝜆𝑚𝑎𝑥 differentiate between subjects
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