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Background Introduction

1.1 Missing Data Imputation (MDI) Task

@ Suppose we have an ideal tabular data; x(deal) ¢ RNxD,

2 However, at hand, we have an observational data : X(°Ps) =
x(@dea) &y pr + NaN © (1yxp — M).

@ Where NaN is the abbreviation of not a number, M € {0,1}N*P js
mask matrix, and 1yxp IS the matrix of ones.

@ We should recover Xdeal) by imputation matrix X4™P) as follows:
X = x(@dea) & pr + X(mp) O (154p — M).
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Background Introduction

1.2 Diffusion Model for Missing Data Imputation
(D Suppose we have a score function: Vy log p(X)

(2 Diffusion models generate samples by simulating the SDE: dX, =
f(X)dt + g dW;

@ Where 7 is the time, f(X,) is drift term, which is concerned with

score function, g, is the volatility term. The density r(X,) is

governed by: argr) = -V (r(Xp)f (X)) + %ggv - Vr(X;)

@ Diffusion-Model-based MDI treats the MDI problem as a conditional
generative problem, which aims to generate samples from

conditional score function: V (miss) log p(X(miss)| x(obs)y

® In practice, ground-truth missing values are unavailable, thus, we
should mask part of data to construct the score function:

Vx(miss) log p (X(miss) |X(obs)) .
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Background Introduction

1.3 Wasserstein Gradient Flow

@ Suppose we want to optimize a cost functional: Feose: P2 (RP) - R

2 Wasserstein Gradient Flow is an absolute continuous trajectory
(g;),=0, that descend F,¢: as effective as possible.

@ The trajectory in Wasserstein Gradient Flow is governed by the

continuity equation: % = -V - (u.q,)

S?COSt
64z .
(® Based on this, the evolution of X € RPcan be delineated by the

ODE %X
dt

@ \elocity field u, is given by u, = =V

=uT
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Motivation

2.1 The Task for MDI: An Optimization Perspective

Based on the Maximum Likelihood Estimation principle, we can
obtain the following optimization problem:
Xx({mp) — argmasx y (miss) logﬁ(X (miss)|X (Obs)).
From the perspective of probabilistic machine learning, we can
reframe the following cost functional:
argmaxr(x(miss)) Er(x(miss)) [log ﬁ(X(mISS) |X(ObS))],

where we assume that X(™155) comes from a proposal distribution
r(X(Miss)) optimizing the sample X(Miss) js optimizing the distribution.
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Motivation

2.2 A Toy Case for DM-based Optimization

Suppose we have a Dirichlet distribution supports on A%, and we want to
optimize the functional defined as follows:

ZH [(X5=1Pk) 23
= k
Argmax,, ez {log <H3 k l_‘1( )) + (Pk — 1)logak,h} )

where a,, is the variable, p, |3, = [2.5,2.5,5.0] is concentration
parameter, and H is the sample number.
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Motivation

2.2 A Toy Case for DM-based Optimization

Expected Optimal Results Results by Diffusion Models

» The results tend to cluster around the expected optimal results
» There might be something implicitly optimized during DMs
» And this implicitly optimized term may result in diversity

NeurlPS 2024, Main Track, Submission ID: #1850
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Proposed Approach

3.1 What makes a diversified imputation result?
@ dX, = f(X,)dr +gTdW IS governed by (XT) =—-V-

(rX)f (X)) + g2V - Vr(Xy).
2 The trajectory in Wasserstein Gradient Flow is governed by the

continuity equation: % = -V (u,q;)

Let us analyze and improve the diffusion model-based
MDI within the Wassersetin gradient flow framework!
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Proposed Approach

3.1 What makes a diversified imputation result?

For diffusion model-based MDI, we can find that they are

optimizing the following cost functional:
argmaxr(x(miss)) ]ET.(X(miSS)) [log ﬁ(X(mISS) |X(0bs))] + l/J(X(mISS)) + const

® V/P-SDE: y(xis9) = Lh[r(X("s9)] + 1E_ mise {[X59] " [xmis]} > 0
® VE-SDE: y(x™is)) = ~p[r(x™is))] > 0

‘ Sub_VP_SDE l/}(X(miSS)) — %H[r(x(miss))] 4+ %),TIEr(X(miSS)) {[X(miss)]T[X(miss)]} >

> P(Xmis)) consistently greater than 0.
> Entropy term %H[r(x (miss)) | results in diversity.
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Proposed Approach

3.2 How to eliminate the diversity?

> P(Xm™iss)) should be smaller than 0.

» The design regularized term should eliminate diversity.
» The negative entropy Is a suitable choice:

l/)(X(miSS)) — —AH[T(X(miSS))],A > 0
» \We can define a novel cost functional as follows:
FNER = Er(x(miss))[logﬁ(x(miss)|X(Obs))] _ AH[T(X(miss))]

» We call our approach termed “Negative Entropy-regularized
Wasserstein Gradient Flow-based Imputation’, aka, NewIlmp.

NeurlPS 2024, Main Track, Submission ID: #1850



Proposed Approach

3.3 How to optimize this functional?
»  Within WGF framework, we can optimize the Fygr With the
help of the following velocity field:

u(X(miss)) =~V (miss O FNER

5T(X(miss))
— VX(miss) log ﬁ(X(mISS) |X(ObS)) + /‘l.vx(miss) log T(X(mISS))

However, implementing this velocity filed to obtain imputed value

(miss) _ _ o . - .
dXd — u(X (m‘SS)) requires explicitly estimating intractable

density function r(X(miss)).

> Directly estimating r(X(™is9)) s intractable.

GT(X(miSS))
0t -

» Analytically solving the continuity equation -V

[u(Xmiss))p(xmiss))] js difficult.
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Proposed Approach

3.3 How to optimize this functional?
Fortunately, with the help of the following two conditions, we can

realize the velocity filed in computer language:

@ \elocity filed is restricted within the RKHS satisfies the

boundary condition: u(X(miss)) g g (x(miss) x(miss)) and the
kernel function satisfies: _ lim  Kk(x(miss) x(mis$)) — o

|Xiss) | oo

@ Density function r(X(™iss)) js bounded.
We can get:

u( X(miss))
_Avx(miss) K(X(miss), X(miss))

+ [vj’((miss) log }5 ()"('(miss) |X(obs))] TK(X(miss), X(miss))
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Proposed Approach

3.4 Can we sidestep the mask modeling?

Interestingly, we can find another joint distribution related cost-
functional:

Fjoint—NER = IET(X(joint))[lOgﬁ(X Gont) | — AH [r(XxU0nV)]
We can prove that:
»  Fjoint-NER = Fngr — const

» Within Wasserstein gradient flow framework, the velocity filed

Induced by Fjoint—ngr 1S Identity to the velocity filed induced
by Fner, (X000 satisfies: u(X00ND) = o (x(miss)y,
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Proposed Approach

3.4 Can we sidestep the mask mod_elinq?
By far, we merely need to simulate the velocity field:

U (X(] oint) )
—Avy(miss) K(X(joint)’ )"((joint))

+[Vimiss) log p(XUOIND)] " (xGoint), ZGoint))
We concerning terms can)lge realized by:

= [, xGoino,

x(joint) _¥(joint) ”%
2h?

> Vy(miss)K(X(joint)’X(joint)) — vx(joint)K(X(joint)’X(joint)) @ (1N><D .
M)+ 0xM

> K(x(joint),)"(’(joint)) = exp(— I

> Vimiss) log H(XUOMD) = Vo oiny log p(XU0MY) O (Ixxp — M) + 0 X M
> Er()?(joint)) realized by Monte Carlo approximation

> Now we merely remain the implementation of Vyoin log p(XU0IY),
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Proposed Approach

3.4 Estimation of Joint Distribution

Up to now, our primary task is to estimate the joint distribution

V ¢Goint) log p(X U0,

> We parameterize the score function V, goint log p(XU°"Y) by a
neural network.

» The neural network is trained by denoise score matching (DSM)
by the following loss function:

ﬁDfM
— E qu()?(jOint)|X(j°int)) [”V)?(jomt) logﬁ(}?(joint)) — v)’z(joint) ]Og 95 (X(ioint) |X(j0int)) ”2]

> where XUoin) — x(oint) 4 o« 7\r(0, g2])
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Proposed Approach

3.5 Overall Framework

|
|
| ] |
I Initialized Matrix Imputed Matrix |
|
|
I | X119 X2 | X13| X14] X15 X11| %12 | X13] X14| X15 :
|
| X211 X22 | X23 | X241 X25 X21]X22 | X23 X24 ) X25 :
|
1 %31 X32] x33] X34 X35 & |X31] X32] X33 X34] X35] |
| |
1 [X41]Xa2]Xa3| Xa4]Xas X41|X42|X43]X44|Xa5] |
|
| X51|X52 | X53| X54] X55 X51[X52 | X53 | X54 | X55] |
|
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Experimental Results

4.1 Toy Case Study Results

X1 X1 X1 X1
(a) Standard Gaussian (b) Student’s-t (¢) Gaussian Mixture (d) Skewed Gaussian

Scenario Distribution Type MAE WASS

Gaussian 0.769 1003 04815006 » Newlmp approach outperforms

Student’s-£ 0.737 +0.053 0.513 0048 -
MAR " Gaussian Mixture 0.763 20097 0.419.0 104 on different types of data.

Skewed-Gaussian 0.422:&0.253 D.492i0_m5

Gaussian 0.769 20015 0.287 20014 » This phenomenon reflects that
MCAR ‘(S;Ude-l}t’s-ﬁd_ t 8-33310.03@ g-gg'ﬂl"ioﬂm h N I h . b

aussian Mixture 0. ! : _

Skewed-Gaussian 0.41?13.?1; 0.21013_52 t € ew mp approac IS ro USt

Gaussian 0.778 10032 0.309+0.030 tO data. type Ilke heavy'talled,
MNAR Student’s-% 0.71540028 0.323 10019 -

Gaussian Mixture 0.807 10042 0.380+0.050 Skewed’ and mUIt|-mOda|

Skewed-Gaussian 0.42140.111 0.20210.006
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Experimental Results

4.2 Baseline Comparison

Scenario | Model | BT | BCD | CcC | CBV | IS | PK | QB | WQw
| | MAE WASS | MAE WASS | MAE  WASS | MAE WASS [MAE WASS | MAE WASS | MAE WASS | MAE  WASS

CSDLT [093° 3447[0927 1820|085 2827|081 386" [0.70" 1686 " |0.99 " 1586 " |0.65 " 2010 [0.77 % 413"
MissDiff |0.85< 220|001 ° 1653|087~ 1.59~[083* 387 *|072* 13257 (092 17.07 * [0.63 * 2625 * |0.75* 6.88
GAIN 0757 0657|0547 1647 075" 067" |068* 068% (056" 188" (059" 190" |065" 505" |0.68% 0.87"
MIRACLE|062* 038 |055° 1.02° |043 025 [055* 046%(3.30% 3506|414 3407 * [046 287 * |0.51% 0.56
MAR |MIWAE |064 053 |052° 1.54* |076° 0.64~[082% 092*|050* 187 [0.65° 198* |055* 505* |0.62% 0.75*
Sink 087 0.02°[002° 384" 088~ 0.83°[084* 008*|075% 243* [004* 361° |065* 471* |076* 1.04*
TDM 083° 0.80°|083° 347° 081~ 073" [076* 085*|062% 1.96* [086* 336° |059* 446* |0.73* 099"
ReMasker 052 052 |048° 115 |060~ 043~[049* 037 *|062% 223* |061° L59* |060* 381 |0.51% 0.50°
Newlmp (052 038 |034 082 [035 025 [031 020 |03 131 |044 120 [045 350 |046  0.55

CSDLT [073% 1.93°[073% 1551 (085~ 271|083 379* (076 * 15107 |072% 1242 *|0.57 * 19.89 * [0.78 * 4.11°
MissDiff [072° 1.62°[073° 1430+|084* 123+]082* 331*[0.75* 1301 *|0.71* 1412* |0.56 * 10.67 * [0.76 % 4.05 *
GAIN 072° 0397038 141~ 078 073~ [072% 099* 057 3.72* [046* 170 |042* 362 [073° 1.14°
MIRACLE (052 015|044~ 194~ |053~ 035 |061* 0727 [299* 5202* (338 4278 * (035 271 |0.56* 0.75
MCAR |MIWAE [058* 024 [050° 255° |076* 0.60|083* 124* [0.64* 495* |051* 205* |[048* 587 |0.67* 0.05*
Sink 073° 0.48°|075° 439~ |084~ 085~ [082% 127 %075 494* [0.74* 336* |061* 592* |076* 1.25°
TDM 068 0427 |063° 357° 0777 075|077 % 115°|0.66* 420° |064* 289° |052* 534 |074* 120°

ReMasker |0.46* 0.11 |039° 1.69° |055° 037 |0.56* 0.64%|0.54% 401* |[048* 171* [045* 394 |0.57* 076

Newlmp |048 0.8 [025 080 [047 034 (042 044 |04 305|032 101|034 366 (053 D76
CSDLT |083° 229*|082° 1568|085 278 “|0.83* 383 % [0.74% 1554 * |0.84* 1220* [0.62* 1977 * [0.78 * 4.09*
MissDiff  [078 * 143 [081* 1480 % |0.84 % 1.27 *|0.83 " 353" |0.72* 1331 [0.81 " 1602 * [061 " 21.62° |076" 470"
GAIN 077 057 °|062° 3.94° (078 0797|078 * 1157 [071" 48" |[0.70* 420" |076* 1053 *[0.75* 1.23°
MIRACLE |0.63 035 [0607 426~ 0527 035 |063% 077 *|3.10* 5556|349 % 4476 % [0.52* 561 |058* 0.80
MNAR [MIWAE |066* 042 [056% 331° |[074~ 068~ [085* 130 [0.59* 433~ [060* 306* |053* 7.21* |0.67* 097 *
Sink 0797 0.68°|083° 5907 [083~ 0.80°[084% 1367 (075" 48 " 084" 5027 |064* 7.23% [0.77 " 1337
TDM 076 0.64°|074° 518° (076 077 °[079% 124* 064~ 402* |0.76* 454* |0.57* 645 [0.74* 1.23°
ReMasker [0.53 028 [042° 1.91° |054° 039|059 " 068 *|051* 350 |063* 3.06% (047 502 |05 0.7
Newlmp |0.60 035 [032 146 (044 034 [D46 052 [040 268 (039 156 042 557 |055 0.8

Kindly Note: The best results are bolded and the second best results are underliend. “**” marks the results
that NewImp significantly outperform with p-value < 0.05 over paired samples ¢-test.

» Newlmp approach outperforms most of prevalent models.
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Experimental Results

4.3 Ablation Study

Scenario | NER [ Joint | BT BCD cC CBV 15 PK QB wQw
| |MAE WASS|MAE WASS|MAE WASS|MAE WASS|MAE WASS|MAE WASS|MAE WASS|MAE WASS

X | X Jo9e* 382% [1.05* 202° [1.04% 547" |086* 581° |067° 202% |1.06% 156% |0.72% 2257 [0.79% 6.49°

MAR X |V [0354 042 [034 082 (0617 0407 |0.58% 0477 (0437 134 [046™ 125 |047% 356 [0.55 0.64"
v | X 096" 383% [1.05* 203 [1.04* 5497 |086* S5.83* |067* 202* |1.067 156 |0.72* 2257 [079* 6.51°

v o v [052 038 (0.3 082 (035 025 |031 020 039 131|044 121 045 350 046 0.55

X | X o712t 211 [074% 1677 |085% 3.72° |083% 5.22* |074% 184% |071° 127* |0.58* 2017 |076% 5.57°
Mcar [ X |V 0527 047% (025 079 |0.62% 0467 |061% 071% (046 305 |034 109 [036" 374" [0.58% 0.82°
v | X 0727 2.12° [073% 1687 [086% 3737 |0.83% 5.24* |074% 184% |0.717 127* |0.58* 2017 [076% 5.60°

v |V {048 018 [025 080 (047 034 (042 044 (044 305 (032 L01 [0.34 366 053 0.76

X | X |os1® 247° [089% 182° [087% 385" |085% 526" |069° 176% |087° 13.0* |064* 206% [077 5717
MNAR | X |V 062 037 (032 147 (0617 0477 |0.64% 0797 (044 279 [0437 188" |044% 565 [0.607 0.87"
v | X 082 257* [0.89* 183 |0.87* 386" |0.85% 5.28* |0.69* 177* |0.88 135% |0.64* 207% [077* 573"

v o v 060 035 (032 146 (044 034|046 052 |040 268 (039 156 |042 557 [055 081
Kindly Note: The best results are bolded and the second best results are underliend. **” marks the

results that NewImp significantly outperform with p-value< 0.05 over paired samples t-test.

» Both of the negative regularization term and joint modeling
strategy are effective for model performance improvement.

NeurlPS 2024, Main Track, Submission ID: #1850



J.d
e A\l
.‘*&é""“.
. -

3* "NEURAL

%% INFORMATION

“J*¥4PROCESSING
o) ¢ SYSTEMS

s
na

T

Lm-  LSimr—

Thank you for listening !
All suggestions are welcomed. !
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