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Machine-Learned Interatomic Potentials

▶ Learn a function which approximates the potential
energy E of an atomic system S = {ru,Zu}Nat

u=1:

f (S ,θ) : S 7→ E ∈ R

▶ Learn θ from training data (energy, atomic forces, and
stress tensor) at reference level (DFT, CC, . . . ).

▶ Consider (semi-)local interactions within rmax:

E (S ,θ) =
Nat∑
i=u

Eu

(
S̃u,θ

)
︸ ︷︷ ︸
=f (S̃u ,θ)

▶ Transform S̃u = {ru,Zu, {rv ,Zv}v∈rmax} to incorporate
symmetries and many-body terms → message passing.
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Many-Body Equivariant Message Passing

▶ Spherical tensors are conventionally used in equivariant message-passing
architectures.

▶ Their products require complicated numerical coefficients and can be
computationally demanding.

▶ State-of-the-art Cartesian models offer a promising alternative but

• rely exclusively on convolutions with invariant filters and

• restrict the construction of many-body features,

limiting the range of possible architectures and their expressive power.

▶ We address these limitations by exploring irreducible Cartesian tensors and their
irreducible products.
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Many-Body Equivariant Message Passing

▶ Clebsch–Gordan tensor product:(
Y l1
m1

⊗ Y l2
m2

)l3
m3

=

l1∑
m1=−l1

l2∑
m2=−l2

C l3m3
l1m1,l2m2

Y l1
m1
Y l2
m2
,

▶ Convolutions and two-body features:

A
(t)
ukl3

=
∑

v∈rmax

(
R
(t)
kl1l2l3

(ruv )Yl1 (r̂uv )

)
︸ ︷︷ ︸
=radial distances×unit vectors

⊗

(∑
k ′

W
(t)
kk ′l2

h
(t)
vk ′l2

)
︸ ︷︷ ︸

=node embeddings

▶ Many-body features:

B
(t)
uηνkL

=
(
A

(t)
ukl1

⊗ · · · ⊗ A
(t)
uklν

)
︸ ︷︷ ︸

ν-fold
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Many-Body Equivariant Message Passing

▶ Clebsch–Gordan tensor product:(
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=

l1∑
m1=−l1
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m2=−l2

C l3m3
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Y l1
m1
Y l2
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▶ Convolutions and two-body features:

A
(t)
ukl3

=
∑

v∈rmax

(
R
(t)
kl1l2l3

(ruv )Yl1 (r̂uv )

)
︸ ︷︷ ︸
=radial distances×unit vectors

⊗

(∑
k ′

W
(t)
kk ′l2

h
(t)
vk ′l2

)
︸ ︷︷ ︸

=node embeddings

▶ Many-body features:

2-body 3-body 4-body
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Irreducible Cartesian Tensors

▶ Embedding unit vectors (Yl (r̂) → Tl (r̂)):

Tl(r̂) = C

⌊l/2⌋∑
m=0

(−1)m
(2l − 2m − 1)!!

(2l − 1)!!

{
r̂⊗(l−2m) ⊗ I⊗m

}
▶ Irreducible Cartesian tensor product (even, i.e., l1 + l2 − l3 = 2k):

(Tl1 ⊗ Tl2)l3

=Cl1l2l3

∑min(l1,l2)−k

m=0
(−1)m2m

(2l3 − 2m − 1)!!

(2l3 − 1)!!

{
(Tl1 · (k +m) · Tl2)⊗ I⊗m

}
▶ Propositions 4.1 & 4.2: The resulting message-passing layers are equivariant to

actions of the orthogonal group and preserve the traceless property.
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Irreducible Cartesian Tensors

▶ Embedding unit vectors &
irreducible Cartesian tensor
products:

even odd even

(a)

(b)

▶ Propositions 4.1 & 4.2: The resulting message-passing layers are equivariant to
actions of the orthogonal group and preserve the traceless property.
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Scaling and Computational Cost
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The required number of calculations:

▶ Spherical tensors: (2L+ 1)5 for two-body features and L
1
2
ν(ν+3) (or KL5(ν−1)) for

many-body features.
▶ Cartesian tensors: 9LL!/

(
2L/2 (L/2)!

)
for two-body features and

K(9LL!/(2L/2(L/2)!))ν−1 for many-body features.
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Evaluation on Benchmark Data Sets

▶ Evaluation on rMD17, MD22, 3BPA, AcAc, and Ta–V–Cr–W data sets.

▶ Competitive results BUT modifications to architectures are necessary!

▶ Energy (E, meV) and force (F, meV/Å) RMSEs for the 3BPA data set:

ICTPfull ICTPsym ICTPsym+lt MACE CACE MACE NequIP

300 K
E 2.70 ± 0.22 2.70 ± 0.08 2.98 ± 0.34 2.81 ± 0.18 6.3 3.0 ± 0.2 3.28 ± 0.10
F 9.45 ± 0.29 9.39 ± 0.31 9.57 ± 0.20 9.47 ± 0.42 21.4 8.8 ± 0.3 10.77 ± 0.19

600 K
E 10.74 ± 0.31 10.38 ± 0.80 10.29 ± 0.90 11.11 ± 1.41 18.0 9.7 ± 0.5 11.16 ± 0.14
F 22.99 ± 0.64 22.87 ± 0.91 23.03 ± 0.76 23.27 ± 1.45 45.2 21.8 ± 0.6 26.37 ± 0.09

1200 K
E 29.80 ± 0.92 30.84 ± 1.87 31.32 ± 1.80 31.15 ± 1.58 58.0 29.8 ± 1.0 38.52 ± 1.63
F 62.82 ± 1.23 64.54 ± 3.88 65.36 ± 3.47 65.22 ± 3.52 113.8 62.0 ± 0.7 76.18 ± 1.11

Dihedral slices
E 9.82 ± 0.79 10.64 ± 1.07 13.03 ± 3.44 8.56 ± 1.53 – 7.8 ± 0.6 23.2
F 17.52 ± 0.54 17.18 ± 0.81 19.31 ± 0.83 17.69 ± 1.29 – 16.5 ± 1.7 23.1

Time/structure [ms] 6.45 ± 0.50 5.31 ± 0.02 3.51 ± 0.22 4.66 ± 0.05 – 24.3 103.5

Memory/batch [GB] 49.66 ± 0.00 42.01 ± 0.11 39.08 ± 0.00 36.26 ± 0.00 – – –
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