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Motivation

Cross-modal hashing (CMH) addresses the highly demanding cross-modal similarity search in both
web search systems and academic domains.

* However, due to limited labour resources, fully supervised annotation becomes impractical for
large-scale datasets. Partial annotation with unknown labels is a feasible solution for Multi-label
learning systems.
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Motivation

Some feasible solution leveraging prior knowledge in vision-language models (e.g., CLIP) has
been established for the partial multi-label recognition task.

However, CLIP label recovery for deep CMH remains under-explored because the original CLIP prompt
yields an unsatisfactory 68% recovery precision.

We seek to overcome the deficiencies of the original CLIP and consider the CLIP prior knowledge of
descriptive completeness.



Contribution

* We propose a PCRIL framework, which jointly performs semantic recovery and pairwise uncertainty
elimination for efficient cross-modal hashing with incomplete labels.

* Anovel recovery architecture 1s proposed to recover the neglected semantic labels and pairwise
similarities in the following figure.

* Extensive experiments verify that our PCRIL can consistently outperform state-of-the-art CMH methods
across a range of incompleteness levels and different benchmarks.
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Method

1. Contrastive Label Sets Construction.

For a sample i’s positive labels
=A{c| i =1},

random subset K C K} is selected as the
anchor set.

3 types of negative variants are
constructed:

* deleting: Kj!’s = K! — {s}
* joining: 1{;¢ = K! U{t}
—{syu{t}
se K! te K!

* replacing: K5t = K
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Method

2. Prompt Contrastive Learning.

We define a learnable prompt template for

multi-class sets as
P(Ké) - (pheadao—({pc}ceKé)aptail)
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where p° =

contains learnable parameters.

A CLIP matching score is defined as
P'(K) =

E,(P(K))
with the following contrastive margin loss between the anchor set and
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Method

3. Potential Label Tree Search (PLTS).
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We can further recover the remaining sample labels by specifying pseudo-labels:
it = H(@(QU{cu}) — ¢)
where H(ZL) = max(O, min(l, % -+ %))
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Method

1. Complementary Semantic Augmentation.

We mix up complementary samples to further eliminate
uncertainty in labels.

Samples carrying the same labels of respectively unknown and

positive values are considered complementary.

2. Adaptive Negative Masking.

For pairwise supervision, we randomly flip a small proportion of

unknown values (U) in similarity matrix as negative (0).

This prevents the false negative pairs from dominating the
pairwise similarity learning.
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Experimental Results

1. Cross-modal Hashing with Incomplete Labels.

Our method significantly remedies the current CMH methods for learning with incomplete labels.

30% known labels

50% known labels

70% known labels

Dataset Method Mean
it t—1i Mean i—t t—1i Mean i—t t— 1 Mean
DCH [32] 69.8 65.9 67.8 75.7 70.2 72.9 77.5 72.1 74.8 71.9
SDMCH [26] 64.3 67.2 65.8 66.0 73.9 70.0 69.5 76.0 72.8 69.5
SCRATCH [3] 75.8 68.7 72.2 82.1 74.6 78.3 85.0 77.8 814 77.3
Flickr WCHash [22]* - - - - - - 62.5 62.6 62.6 -
DCMH [[14) 63.0 65.2 64.1 67.4 70.2 68.8 71.3 74.5 72.9 68.6
SSAH [[17] 58.8 67.6 63.2 69.2 73.3 71.3 75.3 77.4 76.4 70.3
AGAH [11] 59.8 63.4 61.6 78.4 76.6 77.5 84.1 79.2 81.6 73.6
DCHMT [30] 64.1 64.0 64.0 78.3 75.6 76.9 81.0 80.0 80.5 73.8
PCRIL (ours) 785270 75406.7) 77.0(48 8543.3) 79.4(28 824@4.1) 87525 82222 84933 81441
DCH [32] 65.1 66.1 65.6 65.2 66.9 66.0 67.1 68.2 67.6 66.4
SDMCH [26] 55.7 59.9 57.8 58.9 61.2 60.0 593 62.2 60.7 59.5
SCRATCH [3] 35.5 64.1 498 28.9 67.4 48.2 32.6 68.9 50.7 49.6
NUS DCMH [14] 29.5 31.3 304 324 33.4 329 36.3 35.5 359 33.1
SSAH [[17] 359 45.3 40.6 38.4 57.1 47.8 46.7 64.0 55.3 47.9
AGAH [11] 46.7 49,7 48.2 58.8 49.9 54.4 66.7 67.2 66.9 56.5
DCHMT [30] 35.7 35.0 354 57.6 55.9 56.7 67.3 674 67.4 53.1
PCRIL (ours) 67.2(2.1) 70.14.0) 68.7(33.1) 6893.79 70.4(3.00 69.737) T7043.1) 72334 71438 69.93.5
DCH [32] 60.9 61.1 61.0 63.0 63.4 63.2 64.2 64.9 64.5 62.9
SDMCH [26.) 53.7 55.5 54.6 57.3 56.9 57.1 58.5 58.7 58.6 56.8
SCRATCH [3] 33.5 59.1 46.3 34.6 60.9 47.8 32.6 63.4 48.0 47.4
COCO DCMH [14] 49.2 47.0 48.1 52.3 53.1 52.7 52.9 53.1 53.0 51.3
SSAH [l17] 32.0 40.4 36.2 31.1 50.5 40.8 36.7 55.6 46.1 41.0
AGAH [11] 54.2 56.1 55.1 58.5 58.8 58.6 61.2 62.4 61.8 58.5
DCHMT [30] 448 443 445 52.1 49.5 50.8 62.0 61.5 61.8 52.4
PCRIL (ours) 62.8(19) 63524 63222 640100 64.7(1.3) 644(1.2) 67.8(3.6) 68.8(39) 68.3(3.8) 653124




Experimental Results

2. Ablation Study.
Each contribution has stably improved the performance:
* ANM significantly outperforms traditional settings such as Assume Negative (AN), verifying our balanced similarity supervision.

* PCR and CSA modules perform reliable label recovery and improve performance through all datasets and settings.

Method Flickr NUS COCO
30% known 50% known 70% known 30% known 50% known 70% known 30% known 50% known 70% known

B w/IU [9] 57.5 734 82.8 62.4 63.3 67.5 496 50.4 459
B w/ AN |6 68.9 76.6 81.5 51.1 53.8 66.2 458 54.3 59.8
B w/ ANM 75.0 78.1 83.8 60.6 60.7 68.1 599 6l1.4 65.1
B w/ ANM + PCR 76.3 82.1 84.4 68.0 69.4 70.9 62.4 63.7 672
B w/ ANM + PCR + CSA 77.0 824 84.9 68.7 69.7 71.4 63.2 64.4 68.3

Method Flickr COCO

30% known 50% known 70% known 30% known 50% known 70% known

B w/ AN 68.9 76.6 81.5 45.8 54.3 59.8

B w/ AN + CSP 68.8 76.2 82.3 46.4 54.1 59.7

B w/ AN + PCR 75.0 79.4 82.9 55.7 58.2 65.8

B w/ AN + PCR + CSA 75.3 80.2 83.5 58.6 59.6 65.2




Experimental Results

3. Prompt construction and recovery.

e Our prompt construction outperforms the
conventional single-label prompts and the
pure textual prompts.

* The tree-search label recovery sheme PLTS
generally produces the best results compared
to one-step labeling and single-modal
conditioning strategies.

Table 4: Prompt construction variants compared on Flickr dataset. The MAP and precisions of
recovered positive labels (PRECISION) are reported. Our PCRIL can successfully marry multi-label
information with CLIP prior knowledge (compared to Conventional) and yield learned prompts for
instance-label matching (compared to Phrasal).

Variant Prompt Type MAP PRECISION

Learnable Multi-label 30% known 50% known 70% known Mean 30% known 50% known 70% known Mean
Phrasal v 75.0 76.9 74.0 753 65.5 68.2 68.3 67.3
Conventional v 76.3 81.8 82.8 80.3 86.0 89.6 87.0 87.5
Ours v v 77.0 82.4 84.9 814 874 89.6 92.0 89.7

Table 5: Prompt search variants compared on Flickr and NUS datasets. Compared to single-modal
recovery, our proposed PLTS can perform instance-level matching to produce more precise results.
The one-step all variant validates the effectiveness of our recursive label recovery in PLTS.

. MAP PRECISION
Dataset  Variant
30% known 50% known 70% known Mean 30% known 50% known 70% known Mean
By image 78.2 79.2 85.3 80.9 86.2 86.6 88.1 87.0
Flickr By text 74.3 76.6 84.4 78.4 70.1 80.2 77.2 75.8
One-step all 64.6 77.4 82.9 75.0 21.0 38.4 54.6 38.0
Ours 77.0 824 84.9 814 874 89.6 92.0 89.7
By image 51.3 65.4 68.5 61.7 78.4 76.0 74.9 76.4
NUS By text 50.8 65.1 69.3 61.7 69.4 69.1 68.9 69.1
One-step all 48.4 64.9 67.5 60.2 12.1 23.7 27.1 21.0
Ours 68.7 69.7 71.4 69.9 79.5 78.1 80.3 79.3




Experimental Results

4. Other quantitative & qualitative results also verifies the effectiveness of our method from various aspects.

a) Label recovery through epoch. b) Pairwise supervision recovery. c) Feature space: baseline vs. recovered.

b) d) PLTS visualization. e) Heatmap for CLIP recovery model.
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Conclusion

* We propose a PCRIL framework, which jointly performs semantic recovery and
pairwise uncertainty elimination for efficient cross-modal hashing with incomplete

labels.

* To the best of our knowledge, this is the first CMH method to enable prompt
learning with incomplete labels..

» Extensive experiments on widely used benchmarks validated that PCRIL can
significantly outperform state-of-the-art CMH methods with different partial

levels.
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