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We Live in the AI Era, and Behind the Success of AI are Transformers!

https:

//x.com/NobelPrize/status/1843951197960777760

https://www.linkedin.com/pulse/

beyond-proprietary-models-how-open-source-llms-ais-role-ramshetti-5wzuc/
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Self-Attention is the Heart of Transformers

The self-attention mechanism, denoted as SA,
can be expressed as follows:

SA(X ) = softmax
(XWkey(XWqry)

⊺

√
d

)
XWval

= ĀXWval.
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Graph Signal Processing

Discrete signal processing (DSP)

Signal x → Apply Filter g → Output y

yi =
n∑

j=1

xjgi−j . (1)

Graph signal processing (GSP) – generalization of DSP to graph domain

The graph filter H can be written with a shift operator S (i.e., adjacency matrix A):

y = Hx =
K∑

k=0

wkSkx , (2)

where K is the maximum order of polynomial, and wk is a coefficient.
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Self-Attention as a Graph Filter

Self-attention matrix: Ā = D−1A,

A is an adjacency matrix
D is a degree matrix.

Self-attention can be considered as a
simple graph filter (H = Ā)
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Oversmoothing Problem in Transformers
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(a) Filter response
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(b) Cosine similarity

Figure: Filter frequency response and cosine similarity

Oversmoothing problem:
As self-attention is a “low-pass filter”, high-frequency information is attenuated.
Latent representations tend to become similar to each other.
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Graph Filter-based Self-Attention (GFSA)

We redesign self-attention from a graph signal processing perspective

Our proposed GFSA is defined with the graph filter H̃GFSA:

GFSA(X ) := H̃GFSAXWval, (3)

H̃GFSA = w0I + w1Ā + wK (Ā + (K − 1)(Ā2 − Ā))︸ ︷︷ ︸
≃ĀK

, (4)

We approximate ĀK with the first-order Taylor approximation:

ĀK ≃ Ā + (K − 1)(Ā2 − Ā). (5)

GFSA learns the appropriate coefficients for downstream tasks, so it can be reduced to a
low-pass-only, high-pass-only, or combined filter.
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Analysis of Frequency Responses with Visualization
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Figure: Visualization of the frequency responses for all 12 layers of BERT trained on STS-B dataset.
The top-left figure corresponds to the first layer, and the bottom-right figure corresponds to the last
layer.
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GFSA Improves the Performance of Transformers!
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Figure: Performance improvements (%) of our GFSA when integrated with different Transformer
backbones in various domains
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GFSA with Efficient Design Strategies
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Figure: GFSA in selected layer. Effectiveness of
our selective layer strategy on ImageNet-1k
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Figure: GFSA in linear Transformers. Performance,
runtime, and GPU usage (circle sizes) of models on
ListOps (2K) from Long Range Arena benchmark
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Conclusion
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Considering the ongoing advancements in large language models, we hope that our
approach may offer new insights for enhancing their performance and efficiency.
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Thank You!
Email: jeongwhan.choi@yonsei.ac.kr

Paper GitHub
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