Graph Convolutions Enrich the Self-Attention in Transformers! J
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We Live in the Al Era, and Behind the Success of Al are Transformers!
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Self-Attention is the Heart of Transformers

@ The self-attention mechanism, denoted as SA,

can be expressed as follows:
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Graph Signal Processing

Discrete signal processing (DSP)
@ Signal x — Apply Filter g — Output y

n
Yi=Y_ xgij. (1)
=1

Graph signal processing (GSP) — generalization of DSP to graph domain
@ The graph filter H can be written with a shift operator S (i.e., adjacency matrix A):

K
y = Hx = Z wi S¥x, (2)
k=0

where K is the maximum order of polynomial, and wy is a coefficient.
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Self-Attention as a Graph Filter

@ Self-attention matrix: A = DA,

e A is an adjacency matrix
o D is a degree matrix.

@ Self-attention can be considered as a

simple graph filter (H = A)
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@ Self-attention is a weighted graph

o Nodes < Tokens

o Edge weights < Attention scores
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Oversmoothing Problem in Transformers
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Figure: Filter frequency response and cosine similarity

@ Oversmoothing problem:

o As self-attention is a “low-pass filter”, high-frequency information is attenuated.

o Latent representations tend to become similar to each other.
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Graph Filter-based Self-Attention (GFSA)

o We redesign self-attention from a graph signal processing perspective

e Our proposed GFSA is defined with the graph filter Hgrsa:

GFSA(X) := HepsaXW,1, (3)
Fgesa = wol + w1 A+ wk (A+ (K — 1)(A? — A)), (4)

~AK

o We approximate AX with the first-order Taylor approximation:

AKX ~ A+ (K —1)(A? - A). (5)

@ GFSA learns the appropriate coefficients for downstream tasks, so it can be reduced to a
low-pass-only, high-pass-only, or combined filter.

7/12



Analysis of Frequency Responses with Visualization
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Figure: Visualization of the frequency responses for all 12 layers of BERT trained on STS-B dataset.
The top-left figure corresponds to the first layer, and the bottom-right figure corresponds to the last
layer.
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GFSA Improves the Performance of Transformers!
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Figure: Performance improvements (%) of our GFSA when integrated with different Transformer
backbones in various domains
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GFSA with Efficient Design Strategies
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Conclusion
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@ Considering the ongoing advancements in large language models, we hope that our
approach may offer new insights for enhancing their performance and efficiency.
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Thank You!

Email: jeongwhan.choi@yonsei.ac.kr

Paper GitHub
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