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Figure 1. lllustration of (a) the data distribution from the DIV2K training set, (b) the
reconstruction results of RCAN, and (c) the proposed weight-balancing framework.

Xmadient Projection Dynamic Inference Table 1. Quantitative comparison results of different methods on four testing datasets.

Limitation: (b) Testing Stage Qualitative Results
Figure 2. lllustration of the proposed weight-balancing framework WBSR. (a) The training stage ,
® Distribution Imbalance: Existing SR methods mostly use uniformly sampled LR- combines hierarchical equalization sampling and balanced diversity loss to jointly train a supernet
HR patch pairs and ignore the underlying fact that patch contents in images exhibit model with balanced weights. (b) The testing stage adopts the gradient projection dynamic
imbalanced distributions (i.e., the abundant easily reconstructed smooth flat inference with a gradient projection map and multiple dynamic subnets for efficient inference.
patches (48.8 %) and rare hardly reconstructed edge texture patches (16.6 %), as ® Weight-Balancing Training Framework

shown in Figure 1 (a). . . . . .
J (@) We consider attaining a robust model representation with balanced weights from the

® Model Optimization Imbalance: Existing SR algorithms typically employ L1 or L2 perspective of two aspects: data sampling and optimization function. Figure 2 (a)
losses to treat all patch areas and optimize each weight equally, which involve illustrates the training process of our WBSR consisting of Hierarchical Equalization
redundant calculations in flat areas, Whlch leads to |mbalan(.:ed. iInference Sampling (HES) and Balanced Diversity Loss £, , the optimization objective is
performance where the model overfits in simple areas and underfits in complex
ones and results in uneven distribution of model computational resources, as meinIE(x,prmmed(y—Smg(x))

shown in Figure 1 (b). Each subnet §,,, with varying computational cost shares the weights of the supernet

Theoretical Analysis: and is intended to handle image patches of different complexities.
Let x and y denote LR and HR patches, the prediction § = f,(x) from the SR network ® Hierarchical Equalization Sampling
can be modeled as a Gaussian distribution Sample-Level Sampling uniformly samples patches from the training dataset with equal

probability, which ensures that the model learns stable initial weights early in training.

p(Y1x;60) = N (¥; 9, 97 0ise) o . . . N o
noise Class-Level Sampling aims to assign a higher sampling probability to rare difficult

The prediction y can be treated as the mean of a noisy prediction distribution. samples. The threshold for the k_th class and the sampling possibility P, can be Test2K LR Test4K LR Ours HR
® Theorem: Distribution Transformation calculated as follows Figure 3. Qualitative comparison results of different methods on four testing datasets.
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Given identical probability p(y|x) across both train pi,in (¥) and test py,(y) sets tr = t[==]k € [LK], P, = Nk-(Sk] Ablation Studies
; y o . .
D (1) = P () Poal (Y1) Ppar(x) Balanced Dlver3|ty.Loss o N | | et ot Tes2K [0 ——
Pbal(y)  Ptrain(X) To balance the uncertainty of model diversity predictions and avoid excessive PSNR+ SSIMT #FLOPs(G) | PSNRT SSIMf  #FLOPs (G)

optimization, our BDLoss is defined as the likelihood function

This theorem reveals that the existence of imbalance issues stems from the direct SRResNet [24] 26.19 0.7624 5.19 (100%) 27 65 0.7966 5.19 (100%)

proportionality between pi4in (V]|x) and pirain (¥v) with a ratio of Ii::i—‘n((’g). logpirain(y | x;0) = log T p:;?ﬁ]lz’:))-zj;:lg)) & +HES 26.24  0.7665  3.58 (69%) 2771 0.7986  3.43 (66%)

T +Lpd 2621  0.7658  3.58 (69%) | 27.70  0.7984  3.43 (66%)
Contributions: = 10gN (¥; 9, Opoise 1) +108D¢rain(y) — log f N9, 0hoise 1) * Perain ()Y’ FWBSR | 2626 07673 337(65%) | 2773 07993  3.22(62%)
® This paper is the first attempt to explore the imbalance in the image super- Y +WBSR! 26.38  0.7684  5.19 (100%) | 27.80 0.8026  5.19 (100%)

resolution field and gives a reasonable analysis from a perspective of probability ® Gradient Projection Dynamic Inference

statistics, i.e., the imbalance of data distribution and model optimization limits the RCAN[51] 26.39  0.7706  32.60 (100%) | 27.89 ~ 0.8058 = 32.60 (100%)

. Figure 2 (b) illustrates the testing process of our WBSR. Gradient Projection calculates +HES 2643 07748 20.86 (64%) | 2792 08086 19.89 (61%)
algorithm performance. - - ' ' ' ' ' '

_ _ gradient vectors to measure the complexity of the patch contents and constructs a +L 2642 07746 20.86 (64%) | 2791  0.8077 19.89 (61%)

® We propose a plug-and-play weight-balancing framework dubbed WBSR upon gradient projection map online to project the gradient vector of an image patch to the +YWBSR 2645 07755  18.52(57%) | 27.94 08106  19.40 (59%)

HES and BDLoss to achieve balance training without additional computation costs, selection of each subset model. Dynamic Inference adopts the dynamic supernet to L WRSR! 2651 07756 32.60 (100%) | 2810 0.8138 32.60 (100%)

which improves the restoration effect and inference efficiency of models without individually distribute image patches of k classes to M subnets to obtain better
Qanging the original model structure and training data. / Wutaﬂgnaﬂ performance trade-offs. / \ Table 2. Ablation studies of our WBSR. 1 indicates using the supernet for inference. /
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