GraphTrail: Translating GNN Predictions into Human-Interpretable Logical Rules

Burouj Armgaan*
Manthan Dalmia*
Sourav Medya
Sayan Ranu

What in the world...

What is GraphTrail?

A post-hoc, global explainer for message-passing GNNs that presents explanations as logical rules using computation trees (CTrees) as concepts.

And what is a global explainer?

A local explainer explains one graph at a time.

A global explainer explains an entire class of graphs at a time.

Why do we need global explainers?

It takes a lot of manual labor to come up with a global understanding from local explanations.

If a prediction is based on the absence of a part, local explainers are stumped as the explanation is missing from the graph.

So... what's new about yours?

- No dependence on third-party local explainers for concepts
- Closer to a **GNN's true processing** as message-passing architectures operate on CTrees, not subgraphs
- Does not use **pseudo-concepts** like synthetic graphs and vectors. **Mines concepts** from the dataset
- Uses **symbolic regression** to identify the logic in which the GNN combines the concepts.

How do you do it?

Any catches I should know of?

- Boolean logic cannot count concepts.
- Rooted-tree isomorphism limits GraphTrail to

How are the numbers?

	BAMultiShapes	MUTAG	Mutagenicity	NCI1
GLG	0.48 ± 0.02	0.74 ± 0.10	0.62 ± 0.03	0.57 ± 0.04

Show me some of your explanations

The encircled numbers in Mutagenicity are **toxicophore** identifiers. Mutagenicity's rule is for the non-mutagenic class.

Toxicophore name	Aromatic Nitro	Aromatic Amine	Three- membered heterocycle	Nitroso	Unsubstituted heteroatom- bonded heteroatom	Azo-type	Aliphatic Halide	Polycyclic Aromatic System
Substructure representation	O N I aro	NH ₂	NH, O, S	0 	NH ₂ , OH N, O	N N	Cl, Br, I	arom. rings aro arom. rings
Identifier	1	2	3	4	<u>5</u>	<u>6</u>	7	8

According to the dataset authors [1], these eight toxicophores in the Mutagenicity dataset identify 75% of all mutagens.

References

[1] Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores for mutagenicity prediction.