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And what is a global explainer?

Blackbox

A local explainer explains one graph at a time.
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A global explainer explains an entire class of graphs at a time.

Mutagenicity

Why do we need global explainers?
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It takes a lot of manual labor to come up with a global
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understanding from local explanations.

The encircled numbers in Mutagenicity are toxicophore identifiers.
Mutagenicity's rule is for the non-mutagenic class.
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are stumped as the explanation is missing from the graph. Embeddings
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e No dependence on third-party local explainers for concepts

Logical
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e Does not use pseudo-concepts like synthetic graphs and Filtered Blackbox |
vectors. Mines concepts from the dataset Concepts Predictions Symbolic Regression According to the dataset authors [1], these eight toxicophores in the
e Uses symbolic regression to identify the logic in which the Mutagenicity dataset identify 75% of all mutagens.
GNN combines the concepts.
Any catches | should know of? How are the numbers? References
{/////////,,,——— “N\\\‘\\\.-.,
‘ .\. B ./. — « Boolean logic cannot count concepts. BAMultiShapes  MUTAG _ Mutagenicity - [1] Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation
e Rooted-tree isomorphism limits GraphTrail to GLG 0.48+0.02  0.74+0.10 0.62+0.03 0.57+£0.04 and validation of toxicophores for mutagenicity prediction.
O (0 GLG-1s0 0.00 = 0.00 0.61 = 0.20 0.53 £+ 0.06 0.49 4+ 0.05 o , .
\ J \e scalar-featured datasets. G-TRAIL-S  0.864+0.01  0.78+£0.08 0.72+0.01 0.72 4+ 0.02 Journal of medicinal chemistry, 48(1):312-320, 2005.
e O ) G-TRAIL 0.87 £+ 0.02 0.82 + 0.09 0.72 £+ 0.01 0.72 + 0.02

e Using CTrees lowers human interpretability as
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