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Perceptual Learning and the Framework
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The Feature-Task Dual-Learning Framework

The dual-learning model reconciles specificity and transfer in perceptual learning through

three stages:
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Feature Extraction:
Transforms input
images into basic
feature
representations.

Feature-based Learning:

» Specificity = Refines features to
capture statistical changes.
Slower = Improves precision with
repeated exposure.

Task-based Learning:

* Transfer = Generalizes well across
different stimuli.

Faster = Adapts quickly to new tasks
by using existing features.



Interplay Between Feature and Task Learning

Specificity vs. Transfer
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Task-based Learning Only:
Increases accuracy at both trained and untrained
locations, supporting transfer via max pooling.

Feature-based Learning Only:

High accuracy at trained location; accuracy drops at
untrained locations, supporting specificity via refined
representations.

Feature -Task Dual Learning:

Initially supports transfer because of fast Task-based
learning.

Specificity strengthens over time due to slow Feature-
based learning.

Dual-learning framework balances adaptability and precision—Fast Task-based learning
enables transfer, while Slow Feature-based learning reinforces specificity.



Reproducing Classical Findings

Experiment 1: Specificity
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Experiment 2: Transfer
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Setup: Training focused on a single location
and orientation.

Result: High accuracy at the trained location,
low accuracy at untrained locations,
indicating that learning is location-specific.

Setup: Training included varied orientations
and locations.

Result: Improved performance at both
trained and untrained locations, showing that

varied training enables generalization to new
areas.

The model successfully reproduces classical perceptual learning effects, demonstrating both
specificity and transfer.



Reproducing Advanced Findings

Experiment 3: Transition from Transfer to
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The model replicates complex interactions between

experimental paradigms.

Ti12

Setup: Varied number of training sessions
then training a new orientation and location.
Result: More training shifts performance
from transfer to specificity, aligning with
classical perceptual learning patterns.

Setup: Introduced a second training with a
different orientation and location.

Result: Double training reduces specificity,
enhancing transfer by adjusting feature
representations.

and transfer, consistent with advanced



To Learn or Not to Learn, That is the Question

Core Challenge:

« Balancing task performance with the cost of learning
— a fundamental issue for all learning agents, including the brain.
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Model Insights:

Quick Task-based & Slow Feature-based Strategy

» Default State: Task-based learning favors transfer by optimizing existing representations.

« Specificity through Repetition: Repeated stimuli encourage specificity via feature-based learning.
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