Pandora’s Box: Towards Building Universal Attackers against Real-World Large Vision-Language Models
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mislead the LVLM into predicting a target label specified by the attacker.

Single-Task Prompts a N\

(LVLMs) in a practical but challenging setting, where the attacker can solely query
the LVLM model. To make the perturbation universally adversarial to multiple
LVLM-driven tasks, we design a universal adversarial patch with specific locations
to perturb the visual inputs. By solely querying the model to estimate the gradient
direction for optimizing the adversarial patch pattern, we develop a novel
importance-aware gradient approximation strategy to adaptively estimate and adjust
the weights on gradient directions for optimizing different samples. Experiments
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