Road Network Representation Learning with the Third Law of Geography In NeurIPS 2024 H Zhou, W Huang, Y Chen, T He, G Cong, Y-S Ong Nanyang Technological University ### Table of Contents - Introduction - Methods - Experimental results ### Introduction #### Road Network - Road network: road segments & intersections - Road network representation learning: learn embedding for each road segment ## Tobler's First Law of Geography • Everything is related to everything else, but **near** things are more related than distant things. [1] ### Tobler's First Law of Geography - Everything is related to everything else, but **near** things are more related than distant things. [1] - Previous literature is primarily based on the First Law of Geography. ### The Third Law of Geography The more similar geographic configurations of two points (areas), the more similar the values (processes) of the target variable at these two points (areas). [1] ### The Third Law of Geography - The more similar geographic configurations of two points (areas), the more similar the values (processes) of the target variable at these two points (areas). [1] - Geographic configuration refers to the description of spatial neighborhood (or context) around a point (area) - Street view images as the proxy for geographic configuration. (We get SVI from Google Maps.) #### The Difference between Two Laws: A case study ### Research Challenges - To effectively & efficiently model the third law. - Effectiveness: model the mapping from similarity relationships of geographic configurations to similarity relationships of embeddings. - Efficiency: the mapping is from a domain of $O(n^2)$ to another domain of $O(n^2)$. - To fuse the two laws, which may be conflicting. #### Methods - How to model the third law: - Geographic configuration-aware graph augmentation + spectral negative sampling - Fuse the two laws: dual contrastive learning objective + parameter sharing. #### Contributions - The **first** work to analyze road network representation with Geographic Laws. The **first** work to use the Third Law of Geography in road network representation learning and spatial temporal data mining. - A novel graph contrastive learning framework to incorporate the Third Law of Geography, with non-trivial theoretical support. - Extensive downstream tasks to evaluate the effectiveness of the proposed method. ### Method #### Preliminaries - Graph: $\mathcal{G}=(\mathcal{V},\mathcal{E},\boldsymbol{X})$, (node set, edge set, feature matrix). n,m as the number of nodes and edges. \boldsymbol{A} as the adjacency matrix. \boldsymbol{D} is the diagonal degree matrix, where $\boldsymbol{D}_{i,i}$ is the degree of node i. - Graph Laplacian matrix: L := D A - Road network: road segments as nodes. #### Model Architecture #### Geographic Configuration Aware Graph Augmentation and Graph Encoder - Goal: generate similar embedding for road segments with similar geographic configurations, with affordable computational cost. - Build a KNN graph, according to the similarity of geographic configurations. - Employ a SGC (Simple Graph Convolution) encoder on the KNN graph. This will generate similar embedding for connected nodes. ### Contrastive Loss Maximize the mutual information between the original graph and the augmented graph. This can fuse the information between the two views. $$\mathcal{L}_1 = - rac{1}{|\mathcal{V}|} \sum_{i=1}^{|\mathcal{V}|} \left\{ ext{MI}(oldsymbol{Z}_i^{[0]}, oldsymbol{Z}_g^{[1]}) + ext{MI}(oldsymbol{Z}_i^{[1]}, oldsymbol{Z}_g^{[0]}) ight\}$$ $MI(\cdot, \cdot)$ is the mutual information estimator based on JS divergence. #### Contrastive Loss Maximize the mutual information between the original graph and the augmented graph. This can fuse the information between the two views. $$\mathcal{L}_1 = - rac{1}{|\mathcal{V}|} \sum_{i=1}^{|\mathcal{V}|} \left\{ ext{MI}(m{Z}_i^{[0]}, m{Z}_g^{[1]}) + ext{MI}(m{Z}_i^{[1]}, m{Z}_g^{[0]}) ight\}$$ $MI(\cdot, \cdot)$ is the mutual information estimator based on JS divergence. $$\begin{aligned} & \text{MI}(\boldsymbol{Z}_{i}^{[0]}, \boldsymbol{Z}_{g}^{[1]}) = \mathbb{E}_{(\mathcal{G}^{[0]}, \mathcal{G}^{[1]})} \left[\log \mathcal{D}(\boldsymbol{Z}_{i}^{[0]}, \boldsymbol{Z}_{g}^{[1]}) \right] + \mathbb{E}_{(\bar{\mathcal{G}}^{[0]}, \mathcal{G}^{[1]})} \left[\log (1 - \mathcal{D}(\bar{\boldsymbol{Z}}_{i}^{[0]}, \boldsymbol{Z}_{g}^{[1]})) \right] \\ & \text{MI}(\boldsymbol{Z}_{i}^{[1]}, \boldsymbol{Z}_{g}^{[0]}) = \mathbb{E}_{(\mathcal{G}^{[1]}, \mathcal{G}^{[0]})} \left[\log \mathcal{D}(\boldsymbol{Z}_{i}^{[1]}, \boldsymbol{Z}_{g}^{[0]}) \right] + \mathbb{E}_{(\bar{\mathcal{G}}^{[1]}, \mathcal{G}^{[0]})} \left[\log (1 - \mathcal{D}(\bar{\boldsymbol{Z}}_{i}^{[1]}, \boldsymbol{Z}_{g}^{[0]})) \right] \end{aligned}$$ Negative sample is required. ## Negative Sampling - The graph augmentation with SGC encoder achieves the Third Law. - The negative sampling can achieve the reverse version of Third Law "roads with dissimilar geographic configurations should have dissimilar representations." - A negative graph should have the same feature matrix as the original graph, but mainly connects road segments with dissimilar geographic configurations. - A choice is the complete graph (fully connected graph). In the paper I derive the complete graph from the objective of the sparsest cut problem. ### Negative Sampling - The negative sampling can achieve the reverse version of Third Law "roads with dissimilar geographic configurations should have dissimilar representations." - A choice is the complete graph. - The complete graph has $O(n^2)$ edges, with very high computational cost in large graphs. - Then I approximate the complete graph with a spectral graph sparsifier: a d-regular graph, where each node has d edges. # Math of Negative Sampling - The design is inspired by the sparsest cut problem in spectral graph theory, which seeks to find cuts that minimize the number of edges between subsets of nodes. $usc_g := \min_{S} \frac{\mathcal{E}(S, \mathcal{V} S)}{|S||\mathcal{V} S|}$ - The objective can be computed as $$usc_{\mathcal{G}} = \min_{m{x} \in \{0,1\}^n - \{m{0},m{1}\}} rac{\sum_{(i,j) \in \mathcal{E}} (m{x}_i - m{x}_j)^2}{\sum_{(i,j)} (m{x}_i - m{x}_j)^2} = \min_{m{x} \in \{0,1\}^n - \{m{0},m{1}\}} rac{m{x}^T m{L}_{\mathcal{G}} m{x}}{m{x}^T m{L}_{\mathcal{K}} m{x}}$$ - We apply a continuous relaxation in this formula and extend it to the matrix form $\min_{m{Z} \in \mathbb{R}^{n imes f}} \frac{\operatorname{tr}(m{Z}^T m{L}_S m{Z})}{\operatorname{tr}(m{Z}^T m{L}_K m{Z})}$ - The negative sample is based on z and complete graph κ . ## Math of Negative Sampling - The negative sample in the loss can be computed as $\bar{Z} = g_{\theta_1}(\hat{A}_{\mathcal{K}}, Z)$ (Details can be found in the paper.) - However, the computational cost of employing a complete graph is very high $(O(n^2))$, especially in large graphs. - Thus we derive a spectral graph sparsifier to approximate it $(1-\frac{2\sqrt{d-1}}{d})\operatorname{tr}(\boldsymbol{Z}^T\boldsymbol{L}_{\widetilde{\mathcal{K}}}\boldsymbol{Z}) \leq \operatorname{tr}(\boldsymbol{Z}^T\boldsymbol{L}_{\mathcal{K}}\boldsymbol{Z}) \leq (1+\frac{2\sqrt{d-1}}{d})\operatorname{tr}(\boldsymbol{Z}^T\boldsymbol{L}_{\widetilde{\mathcal{K}}}\boldsymbol{Z}),$ where $\widetilde{\mathcal{K}}$ is a d-regular graph. - We replace ${\mathcal K}$ with $\widetilde{{\mathcal K}}$. #### Fuse the Third and the First Law - To learn the first law, we design an graph augmentation with graph diffusion according to the road connectivity. And follow similar graph contrastive learning as the Third Law. - · We use parameter sharing between the two learning objectives. - We add the two losses as the final learning objective. # Experiments ## Experimental Setups - Dataset: road networks (Singapore & New York) from OpenStreetMap, street view images from Google. - Downstream Task: road function prediction, road traffic inference, and visual road retrieval. - Hyper-parameter settings: do not tune a lot, same setting on two dataset in different tasks. Table 1: Dataset Statistics | City | # Roads | # Edges | # SVIs | |-----------|---------|---------|---------| | Singapore | 45,243 | 138,843 | 136,399 | | NYC | 139,320 | 524,565 | 254,239 | ## Experimental Results - 1 Table 2: Results in Road Function Prediction, with the best in **bold** and the second best <u>underlined</u> | Methods | Singapore | | | NYC | | | | |--------------|------------------|-------------------------|------------------|------------------|------------------|-------------------------|--| | | Micro-F1 (%) ↑ | Macro-F1 (%) ↑ | AUROC (%)↑ | Micro-F1 (%) ↑ | Macro-F1 (%) ↑ | AUROC (%)↑ | | | Deepwalk | 62.76 ± 0.49 | 13.30 ± 0.10 | 63.23 ± 0.47 | 78.09 ± 0.18 | 14.62 ± 0.02 | 58.49 ± 0.33 | | | MVGRL | 66.61 ± 0.50 | 30.67 ± 0.66 | 74.34 ± 0.46 | 78.23 ± 0.23 | 17.39 ± 0.23 | 69.96 ± 0.35 | | | CCA-SSG | 64.28 ± 0.37 | 22.55 ± 0.49 | 70.26 ± 0.37 | 78.20 ± 0.24 | 15.97 ± 0.15 | 68.15 ± 0.24 | | | GGD | 64.21 ± 0.39 | 20.58 ± 0.40 | 68.97 ± 0.40 | 78.14 ± 0.25 | 15.75 ± 0.16 | 66.11 ± 0.33 | | | RFN | 62.75 ± 0.44 | 12.85 ± 0.06 | 54.64 ± 0.44 | oom | oom | oom | | | SRN2Vec | 64.02 ± 0.45 | 22.47 ± 0.37 | 71.18 ± 0.40 | oom | oom | oom | | | SARN | 66.49 ± 0.47 | 22.59 ± 0.51 | 72.74 ± 0.50 | 78.14 ± 0.21 | 14.62 ± 0.02 | 68.54 ± 0.30 | | | Garner | 81.40 ± 0.30 | 62.45 \pm 0.64 | 93.27 ± 0.22 | 82.97 ± 0.16 | 47.22 ± 0.42 | 89.30 \pm 0.21 | | [&]quot;oom" means out-of-memory. ## Experimental Results - 2 Table 3: Results in Road Traffic Inference, with the best in **bold** and the second best <u>underlined</u> | Methods | Singapore
MAE \ RMSE \ | | MAPE ↓ | APE \ MAE \ | | MAPE ↓ | |----------|---------------------------|-----------------|-------------------|----------------------------|-----------------|-------------------| | Deepwalk | 3.43 ± 0.03 | 4.31 ± 0.05 | 0.721 ± 0.038 | 4.31 ± 0.03 | 5.92 ± 0.05 | 0.267 ± 0.002 | | MVGRL | 3.04 ± 0.04 | 3.82 ± 0.04 | 0.629 ± 0.041 | 3.91 ± 0.02 | 5.16 ± 0.03 | 0.243 ± 0.001 | | CCA-SSG | 3.31 ± 0.03 | 4.15 ± 0.04 | 0.674 ± 0.037 | 4.03 ± 0.03 | 5.34 ± 0.04 | 0.253 ± 0.003 | | GGD | 3.37 ± 0.03 | 4.27 ± 0.04 | 0.684 ± 0.039 | 4.80 ± 0.03 | 6.63 ± 0.06 | 0.267 ± 0.002 | | RFN | 3.54 ± 0.03 | 4.48 ± 0.04 | 0.717 ± 0.046 | oom | oom | oom | | SRN2Vec | 3.44 ± 0.04 | 4.47 ± 0.05 | 0.569 ± 0.025 | oom | oom | oom | | SARN | 3.40 ± 0.03 | 4.32 ± 0.05 | 0.697 ± 0.038 | 4.66 ± 0.04 | 6.39 ± 0.07 | 0.262 ± 0.002 | | Garner | 2.80 ± 0.03 | 3.52 ± 0.04 | 0.579 ± 0.030 | $ $ 3.30 \pm 0.02 | 4.40 ± 0.03 | 0.207 ± 0.002 | "oom" means out-of-memory. ### Case Study Case: top 10 most similar roads of an anchor found by the First Law only and both laws. ### Ablation Study Table 5: Ablation studies on Road Function Prediction | Methods | Singapore Micro-F1 (%) ↑ Macro-F1 (%) ↑ AUROC (%) ↑ | | | NYC Micro-F1 (%) ↑ Macro-F1 (%) ↑ AUROC (%) ↑ | | | |--------------------------|---|------------------|------------------|---|------------------|------------------| | Garner - sns - aug - SVI | 1 | 30.67 ± 0.66 | 74.34 ± 0.46 | 78.23 ± 0.23 | 17.39 ± 0.23 | 69.96 ± 0.35 | | Garner - sns - aug | 74.78 ± 0.32 | 50.21 ± 0.60 | 88.21 ± 0.30 | 80.64 ± 0.22 | 37.14 ± 0.44 | 85.30 ± 0.25 | | Garner - sns | 80.65 ± 0.31 | 60.57 ± 0.68 | 92.46 ± 0.23 | 82.62 ± 0.19 | 45.78 ± 0.52 | 88.61 ± 0.18 | | Garner | 81.40 ± 0.30 | 62.45 ± 0.64 | 93.27 ± 0.22 | 82.97 ± 0.16 | 47.22 ± 0.42 | 89.30 ± 0.21 | [&]quot;- sns" means to generate negative samples only with feature shuffling. "- aug" means without geographic configuration aware graph augmentation. "- SVI" means without street view images as inputs. ## Parameter Sensitivity Test Sensitivity test on the degree of similarity graph and negative graph. ### The End