Road Network Representation Learning with the Third Law of Geography

In NeurIPS 2024
H Zhou, W Huang, Y Chen, T He, G Cong, Y-S Ong
Nanyang Technological University

Table of Contents

- Introduction
- Methods
- Experimental results

Introduction

Road Network

- Road network: road segments & intersections
- Road network representation learning: learn embedding for each road segment

Tobler's First Law of Geography

• Everything is related to everything else, but **near** things are more related than distant things. [1]

Tobler's First Law of Geography

- Everything is related to everything else, but **near** things are more related than distant things. [1]
- Previous literature is primarily based on the First Law of Geography.

The Third Law of Geography

 The more similar geographic configurations of two points (areas), the more similar the values (processes) of the target variable at these two points (areas). [1]

The Third Law of Geography

- The more similar geographic configurations of two points (areas), the more similar the values (processes) of the target variable at these two points (areas). [1]
- Geographic configuration refers to the description of spatial neighborhood (or context) around a point (area)
- Street view images as the proxy for geographic configuration. (We get SVI from Google Maps.)

The Difference between Two Laws: A case study

Research Challenges

- To effectively & efficiently model the third law.
 - Effectiveness: model the mapping from similarity relationships of geographic configurations to similarity relationships of embeddings.
 - Efficiency: the mapping is from a domain of $O(n^2)$ to another domain of $O(n^2)$.
- To fuse the two laws, which may be conflicting.

Methods

- How to model the third law:
 - Geographic configuration-aware graph augmentation + spectral negative sampling
- Fuse the two laws: dual contrastive learning objective + parameter sharing.

Contributions

- The **first** work to analyze road network representation with Geographic Laws. The **first** work to use the Third Law of Geography in road network representation learning and spatial temporal data mining.
- A novel graph contrastive learning framework to incorporate the Third Law of Geography, with non-trivial theoretical support.
- Extensive downstream tasks to evaluate the effectiveness of the proposed method.

Method

Preliminaries

- Graph: $\mathcal{G}=(\mathcal{V},\mathcal{E},\boldsymbol{X})$, (node set, edge set, feature matrix). n,m as the number of nodes and edges. \boldsymbol{A} as the adjacency matrix. \boldsymbol{D} is the diagonal degree matrix, where $\boldsymbol{D}_{i,i}$ is the degree of node i.
- Graph Laplacian matrix: L := D A
- Road network: road segments as nodes.

Model Architecture

Geographic Configuration Aware Graph Augmentation and Graph Encoder

- Goal: generate similar embedding for road segments with similar geographic configurations, with affordable computational cost.
- Build a KNN graph, according to the similarity of geographic configurations.
- Employ a SGC (Simple Graph Convolution) encoder on the KNN graph.
 This will generate similar embedding for connected nodes.

Contrastive Loss

 Maximize the mutual information between the original graph and the augmented graph. This can fuse the information between the two views.

$$\mathcal{L}_1 = -rac{1}{|\mathcal{V}|} \sum_{i=1}^{|\mathcal{V}|} \left\{ ext{MI}(oldsymbol{Z}_i^{[0]}, oldsymbol{Z}_g^{[1]}) + ext{MI}(oldsymbol{Z}_i^{[1]}, oldsymbol{Z}_g^{[0]})
ight\}$$

 $MI(\cdot, \cdot)$ is the mutual information estimator based on JS divergence.

Contrastive Loss

 Maximize the mutual information between the original graph and the augmented graph. This can fuse the information between the two views.

$$\mathcal{L}_1 = -rac{1}{|\mathcal{V}|} \sum_{i=1}^{|\mathcal{V}|} \left\{ ext{MI}(m{Z}_i^{[0]}, m{Z}_g^{[1]}) + ext{MI}(m{Z}_i^{[1]}, m{Z}_g^{[0]})
ight\}$$

 $MI(\cdot, \cdot)$ is the mutual information estimator based on JS divergence.

$$\begin{aligned} & \text{MI}(\boldsymbol{Z}_{i}^{[0]}, \boldsymbol{Z}_{g}^{[1]}) = \mathbb{E}_{(\mathcal{G}^{[0]}, \mathcal{G}^{[1]})} \left[\log \mathcal{D}(\boldsymbol{Z}_{i}^{[0]}, \boldsymbol{Z}_{g}^{[1]}) \right] + \mathbb{E}_{(\bar{\mathcal{G}}^{[0]}, \mathcal{G}^{[1]})} \left[\log (1 - \mathcal{D}(\bar{\boldsymbol{Z}}_{i}^{[0]}, \boldsymbol{Z}_{g}^{[1]})) \right] \\ & \text{MI}(\boldsymbol{Z}_{i}^{[1]}, \boldsymbol{Z}_{g}^{[0]}) = \mathbb{E}_{(\mathcal{G}^{[1]}, \mathcal{G}^{[0]})} \left[\log \mathcal{D}(\boldsymbol{Z}_{i}^{[1]}, \boldsymbol{Z}_{g}^{[0]}) \right] + \mathbb{E}_{(\bar{\mathcal{G}}^{[1]}, \mathcal{G}^{[0]})} \left[\log (1 - \mathcal{D}(\bar{\boldsymbol{Z}}_{i}^{[1]}, \boldsymbol{Z}_{g}^{[0]})) \right] \end{aligned}$$

Negative sample is required.

Negative Sampling

- The graph augmentation with SGC encoder achieves the Third Law.
- The negative sampling can achieve the reverse version of Third Law "roads with dissimilar geographic configurations should have dissimilar representations."
- A negative graph should have the same feature matrix as the original graph, but mainly connects road segments with dissimilar geographic configurations.
- A choice is the complete graph (fully connected graph). In the paper I
 derive the complete graph from the objective of the sparsest cut problem.

Negative Sampling

- The negative sampling can achieve the reverse version of Third Law "roads with dissimilar geographic configurations should have dissimilar representations."
- A choice is the complete graph.
- The complete graph has $O(n^2)$ edges, with very high computational cost in large graphs.
- Then I approximate the complete graph with a spectral graph sparsifier: a d-regular graph, where each node has d edges.

Math of Negative Sampling

- The design is inspired by the sparsest cut problem in spectral graph theory, which seeks to find cuts that minimize the number of edges between subsets of nodes. $usc_g := \min_{S} \frac{\mathcal{E}(S, \mathcal{V} S)}{|S||\mathcal{V} S|}$
- The objective can be computed as

$$usc_{\mathcal{G}} = \min_{m{x} \in \{0,1\}^n - \{m{0},m{1}\}} rac{\sum_{(i,j) \in \mathcal{E}} (m{x}_i - m{x}_j)^2}{\sum_{(i,j)} (m{x}_i - m{x}_j)^2} = \min_{m{x} \in \{0,1\}^n - \{m{0},m{1}\}} rac{m{x}^T m{L}_{\mathcal{G}} m{x}}{m{x}^T m{L}_{\mathcal{K}} m{x}}$$

- We apply a continuous relaxation in this formula and extend it to the matrix form $\min_{m{Z} \in \mathbb{R}^{n imes f}} \frac{\operatorname{tr}(m{Z}^T m{L}_S m{Z})}{\operatorname{tr}(m{Z}^T m{L}_K m{Z})}$
- The negative sample is based on z and complete graph κ .

Math of Negative Sampling

- The negative sample in the loss can be computed as $\bar{Z} = g_{\theta_1}(\hat{A}_{\mathcal{K}}, Z)$ (Details can be found in the paper.)
- However, the computational cost of employing a complete graph is very high $(O(n^2))$, especially in large graphs.
- Thus we derive a spectral graph sparsifier to approximate it $(1-\frac{2\sqrt{d-1}}{d})\operatorname{tr}(\boldsymbol{Z}^T\boldsymbol{L}_{\widetilde{\mathcal{K}}}\boldsymbol{Z}) \leq \operatorname{tr}(\boldsymbol{Z}^T\boldsymbol{L}_{\mathcal{K}}\boldsymbol{Z}) \leq (1+\frac{2\sqrt{d-1}}{d})\operatorname{tr}(\boldsymbol{Z}^T\boldsymbol{L}_{\widetilde{\mathcal{K}}}\boldsymbol{Z}),$ where $\widetilde{\mathcal{K}}$ is a d-regular graph.
- We replace ${\mathcal K}$ with $\widetilde{{\mathcal K}}$.

Fuse the Third and the First Law

- To learn the first law, we design an graph augmentation with graph diffusion according to the road connectivity. And follow similar graph contrastive learning as the Third Law.
- · We use parameter sharing between the two learning objectives.
- We add the two losses as the final learning objective.

Experiments

Experimental Setups

- Dataset: road networks
 (Singapore & New York) from OpenStreetMap, street view images from Google.
- Downstream Task: road function prediction, road traffic inference, and visual road retrieval.
- Hyper-parameter settings: do not tune a lot, same setting on two dataset in different tasks.

Table 1: Dataset Statistics

City	# Roads	# Edges	# SVIs
Singapore	45,243	138,843	136,399
NYC	139,320	524,565	254,239

Experimental Results - 1

Table 2: Results in Road Function Prediction, with the best in **bold** and the second best <u>underlined</u>

Methods	Singapore			NYC			
	Micro-F1 (%) ↑	Macro-F1 (%) ↑	AUROC (%)↑	Micro-F1 (%) ↑	Macro-F1 (%) ↑	AUROC (%)↑	
Deepwalk	62.76 ± 0.49	13.30 ± 0.10	63.23 ± 0.47	78.09 ± 0.18	14.62 ± 0.02	58.49 ± 0.33	
MVGRL	66.61 ± 0.50	30.67 ± 0.66	74.34 ± 0.46	78.23 ± 0.23	17.39 ± 0.23	69.96 ± 0.35	
CCA-SSG	64.28 ± 0.37	22.55 ± 0.49	70.26 ± 0.37	78.20 ± 0.24	15.97 ± 0.15	68.15 ± 0.24	
GGD	64.21 ± 0.39	20.58 ± 0.40	68.97 ± 0.40	78.14 ± 0.25	15.75 ± 0.16	66.11 ± 0.33	
RFN	62.75 ± 0.44	12.85 ± 0.06	54.64 ± 0.44	oom	oom	oom	
SRN2Vec	64.02 ± 0.45	22.47 ± 0.37	71.18 ± 0.40	oom	oom	oom	
SARN	66.49 ± 0.47	22.59 ± 0.51	72.74 ± 0.50	78.14 ± 0.21	14.62 ± 0.02	68.54 ± 0.30	
Garner	81.40 ± 0.30	62.45 \pm 0.64	93.27 ± 0.22	82.97 ± 0.16	47.22 ± 0.42	89.30 \pm 0.21	

[&]quot;oom" means out-of-memory.

Experimental Results - 2

Table 3: Results in Road Traffic Inference, with the best in **bold** and the second best <u>underlined</u>

Methods	Singapore MAE \ RMSE \		MAPE ↓	APE \ MAE \		MAPE ↓
Deepwalk	3.43 ± 0.03	4.31 ± 0.05	0.721 ± 0.038	4.31 ± 0.03	5.92 ± 0.05	0.267 ± 0.002
MVGRL	3.04 ± 0.04	3.82 ± 0.04	0.629 ± 0.041	3.91 ± 0.02	5.16 ± 0.03	0.243 ± 0.001
CCA-SSG	3.31 ± 0.03	4.15 ± 0.04	0.674 ± 0.037	4.03 ± 0.03	5.34 ± 0.04	0.253 ± 0.003
GGD	3.37 ± 0.03	4.27 ± 0.04	0.684 ± 0.039	4.80 ± 0.03	6.63 ± 0.06	0.267 ± 0.002
RFN	3.54 ± 0.03	4.48 ± 0.04	0.717 ± 0.046	oom	oom	oom
SRN2Vec	3.44 ± 0.04	4.47 ± 0.05	0.569 ± 0.025	oom	oom	oom
SARN	3.40 ± 0.03	4.32 ± 0.05	0.697 ± 0.038	4.66 ± 0.04	6.39 ± 0.07	0.262 ± 0.002
Garner	2.80 ± 0.03	3.52 ± 0.04	0.579 ± 0.030	$ $ 3.30 \pm 0.02	4.40 ± 0.03	0.207 ± 0.002

"oom" means out-of-memory.

Case Study

 Case: top 10 most similar roads of an anchor found by the First Law only and both laws.

Ablation Study

Table 5: Ablation studies on Road Function Prediction

Methods	Singapore Micro-F1 (%) ↑ Macro-F1 (%) ↑ AUROC (%) ↑			NYC Micro-F1 (%) ↑ Macro-F1 (%) ↑ AUROC (%) ↑		
Garner - sns - aug - SVI	1	30.67 ± 0.66	74.34 ± 0.46	78.23 ± 0.23	17.39 ± 0.23	69.96 ± 0.35
Garner - sns - aug	74.78 ± 0.32	50.21 ± 0.60	88.21 ± 0.30	80.64 ± 0.22	37.14 ± 0.44	85.30 ± 0.25
Garner - sns	80.65 ± 0.31	60.57 ± 0.68	92.46 ± 0.23	82.62 ± 0.19	45.78 ± 0.52	88.61 ± 0.18
Garner	81.40 ± 0.30	62.45 ± 0.64	93.27 ± 0.22	82.97 ± 0.16	47.22 ± 0.42	89.30 ± 0.21

[&]quot;- sns" means to generate negative samples only with feature shuffling. "- aug" means without geographic configuration aware graph augmentation. "- SVI" means without street view images as inputs.

Parameter Sensitivity Test

Sensitivity test on the degree of similarity graph and negative graph.

The End