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Numerous scientific and engineering problems entail recurrently resolving intricate Partial
Differential Equation (PDE) for various parameter values, including fluid flows, heat transfer
analysis, and structural deformation studies.
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X > y « QOutput: solution, e.g. at some given time.

Neural Operators

Advantages: Neural operators are faster, more
accurate, and more flexible than traditional
methods.
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Neural Operators
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Characteristic: Learning mappings between infinite-dimensional function spaces, ensuring

discretization invariance.

Can adapt to different
levels of discretization!
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Continuous function.}

° Discrete grid.
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Different discrete representations correspond to the same underlying continuous function.
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Related Work and Our Contributions (&

Existing neural operators are mainly categorized into FNO type based on frequency domain
transformation, Transformer and CNN type based on spatial integration.

Contributions.
« A novel Mamba scanning integration is proposed as kernel integration.
* Propose MambaNO, combining global Mamba and local convolution integration.
* Prove that the proposed MambaNO is a representation-equivalent neural operator.
« Demonstrated MambaNQO's outstanding performance in solving PDEs.
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h'(z) =Ah(x) + Bv(z),
/D Ki(z,y,v(z),v(y))v(y)dy u(z) —Ch(z)
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This Paper

Kernel integration formula State Space Model

Our paper establishes a connection between the kernel integration formula and the state-
space Model through rigorous mathematical derivation, enabling the global integration
process to be implemented with linear complexity scanning!
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Cross-scanning operation
iIn Mamba integration with
a computational
complexity of O(N).

Cross-Scan
O(N) complexity
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MambaNO

MambaNO ~
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Experiments

* We ran fair grid search for each baseline and each benchmark.

Visualization results on the 2D Navier-Stokes equations.
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Experiments

Table 1: Relative median L! test errors for various benchmarks and models.

In/Out GT Unet ResNet DON FNO CNO MambaNO
Poisson In 4.09% 1.05% 0.63% 19.07% 7.35% 0.31% 0.17%
Equation Out 3.47% 1.55% 1.34% 11.18% 8.62% 0.33% 0.21%
Wave In 0.91% 0.96% 0.70% 1.43% 0.65% 0.40% 0.38%
Equation Out 1.97% 2.24% 2.50% 3.12% 1.95% 1.29% 1.22%
Smooth In 1.18% 0.59% 0.47% 1.38% 0.34% 0.29% 0.26%
Transport Out 666.07% 2.97% 273% 119.61% 1.97% 0.35% 0.34%
Discontinuous In 1.70% 1.44% 1.41% 6.35% 1.26% 1.11% 1.08%
Transport Out 2727096% 1.62% 1.54% 140.73% 3.47% 1.31% 1.21%
Allen-Cahn In 1.30% 1.38% 2.36% 22.97% 0.87% 0.91% 0.72%
Equation Out 3.03% 3.28% 391% 20.75% 2.18% 2.33% 2.11%
Navier-Stokes In 4.61% 4.94% 4.10% 12.95% 3.97% 3.07% 2.74%
Equation Out 17.23% 16.98% 15.04% 23.39% 14.89% 10.94% 5.95%
Darcy In 0.86% 0.54% 0.42% 1.13% 0.80% 0.38% 0.33%
Flow Out 1.17% 0.64% 0.60% 1.61% 1.11% 0.50% 0.44%
Compressible In 2.33% 0.72% 1.89% 2.15% 0.49% 0.39% 0.34%

Euler Out 3.14% 091%  2.20% 3.08% 0.74%  0.63% 0.61%




Experiments
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* Variation In test errors across various resolutions and scaling laws.
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