



In-N-Out: Lifting 2D Diffusion Prior for 3D Object Removal via Latents Alignment

Dongting Hu<sup>1</sup>, Huan Fu<sup>2</sup>, Jiaxian Guo<sup>3</sup>, Liuhua Peng<sup>1</sup> Tingjin Chu<sup>1</sup>, Feng Liu<sup>1</sup>, Tongliang Liu<sup>4,5</sup>, Mingming Gong<sup>1,5</sup>

<sup>&</sup>lt;sup>1</sup>The University of Melbourne <sup>2</sup>Alibaba Group

<sup>&</sup>lt;sup>3</sup> Google Research <sup>4</sup> The University of Sydney

<sup>&</sup>lt;sup>5</sup> Mohamed bin Zayed University of Artificial Intelligence



# **Background: 3D Object Removal**





**Novel Views** 

w/o object



## Background: 3D Object Removal

Given:

**Images** 

Masks









#### Motivation:

- 3D representation (e.g. NeRF) learns from pixels.
- There is no supervision in the occluded area.
- We need to fill in the pixels in the masked area.

#### Target:

Novel Views w/o object





# **Background: Diffusion Inpainting Method**

Diffusion Models: State-of-the-art 2D inpainting method





# **Background: Diffusion Inpainting Method**





### **Background: Motivation**

3D Inconsistency

--> Geometric Mismatch

--> Blurred Results

Motivation:

Inpaint **consistent** results for multi-view image input











#### **Background: Diffusion Models**

Inpainted image is generated from a sampled (gaussian) noise, and denoised into a clean image iteratively (T ~ 0).



Solution: Align the latents for different input images to achieve consistent multi-view inpainted images.



#### **Method Overview**

A conditional-sampling-like approach:

Sample one view as the base view, and align latents of other views with it

$$p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)$$
 Initial Intermediate Latents

ELA: Explicit Initial Latent Alignment

Sample the initial (latent) noise according to geometry clue of the 3D representation

ILA: Implicit Inter. Latents Alignment

Network predicts latent using shared key and value attention elements





## **Method: Explicit Initial Latent Alignment**

#### ELA:

- Leverage geometric information to explicitly align the initial latent in 3D space
- Volume rendering using density  $\sigma$
- Pixel-wise initial noise is sampled by

$$z^T(r) = \sum \Gamma_i \Big( 1 - \exp \big( -\sigma(\tau_i) \delta(\tau_i) \big) \Big) z^T(\tau_i), \quad \text{with } z^T(\tau_i) = f_{p,i}(z_p^T, \tau_i).$$





## Method: Implicit Intermediate Latent Alignment

#### ILA:

- Intermediate latents are predicted by inpainting network, which could only be aligned implicitly
- Inpainting network use self-attention (SA) to infer noise prediction

$$SA(Q_i, K_i, V_i) = Softmax\left(\frac{Q_i K_i^T}{\sqrt{d}}\right) V_i$$

 We can inject the key (K) and value (V) from base view into current denoising function

$$ext{CVA}(Q_i, K_p, V_p) = ext{Softmax}\left(\frac{Q_i(K_p)^T}{\sqrt{d}}\right) V_p$$





### **Method: Optimization**

Loss function: L1 loss + perceptual loss + adversarial loss

$$\mathcal{L}_{ ext{patch}}(\phi) = \sum_{
ho \in \mathcal{P}_{ ext{sub}}} \left\| \hat{I}_{\phi}(
ho) - ilde{\mathcal{I}}(
ho) 
ight\|_1 + \mathcal{L}_{ ext{lpips}}(\hat{I}_{\phi}(
ho), ilde{\mathcal{I}}(
ho)) + \mathcal{L}_{ ext{adv}}(\hat{I}_{\phi}(
ho), ilde{\mathcal{I}}(
ho)).$$





# Method: 2D inpainting example









View #2



(a) Original Image



(b) Inpainted by Stable Diffusion



(c) Inpainted by Ours



#### **Results: SPIn-NeRF Dataset**



Training Inputs SPIn-NeRF NeRFiller InFusion Ours

13



#### **Results: Self-Collected Dataset**



Training Input NeRFiller InFusion Ours 14





# Thank you

