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Motivation

Under distribution shifts, models often fail to generalize.
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Motivation

Without labels, it is hard to predict models’ accuracy in OOD.
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Motivation

Recent studies [1,2] found simple empirical laws between ID and OOD.

- Models’ ID vs. OOD accuracy are strongly correlated, termed as accuracy-on-the-line (ACL) [1].
- Additionally, when ACL, their agreements are correlated showing nearly identical linearity ( ) 12].
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[1] Miller et al., Accuracy on the line: on the strong correlation between out-of-distribution and in-distribution generalization, |ICML 2021
[2] Baek et al., Agreement-on-the-line: Predicting the performance &f neural networks under distribution shift, NeurlPS 2022
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Motivation

However, they often break in various distribution shifts.

- Linearity breakdown leads to unreliable prediction on OOD performances.
- Any intervention to restore such linear trends”
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Motivation

However, they often break in various distribution shifts.

- Linearity breakdown leads to unreliable prediction on OOD performances.

- Any intervention to restore such linear trends”
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Observation
Test-Time Adaptation (TTA) empirically leads to stronger ACL / AGL.
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Observation
Test-Time Adaptation (TTA) empirically leads to stronger ACL / AGL.
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Explanation

Why TTA leads to stronger linear trends?
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Explanation

Why TTA leads to stronger linear trends?

Theoretical Condition for Perfect ACL in Gaussian Toy Data

Out-of-distribution Q differs from in-distribution P by just some scaling constants a, y > 0,
P(x|y) =N (y-u; ), 0(x|y) = N (- au; y°%).

Theorem 1] Miller et al. (2021).
Jnder the Gaussian data setup, across all |

accuracies over P and Q observes perfect
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Explanation
Why TTA leads to stronger linear trends?

Theoretical Condition for Perfect ACL in Gaussian Toy Data

Out-of-distribution Q differs from in-distribution P by just some scaling constants a, y > 0,
P(x|y)=N(y-u; ), 0(x|y) = N (- au; y°D).

Theorem 1] Miller et al. (2021).
Under the Gaussian data setup, across all linear classifiers f, : x sign(8 ' x), the profit-scaled

accuracies over P and Q observes perfect linear correlation with a bias of zero and a slope of a/y.

After TTA, in penultimate layer feature space, ID vs. OOD distributions have same mean direction
and covariance shape (i.e., satisfying Theorem 1).
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Explanation

Why TTA leads to stronger linear trends?

Cosine Similarity Slope
Setup Mean Covariance Theoretical ~ Empirical

Vanilla (AI’ChS.) 0.691 £0.175 0.750 £ 0.109 — —
BN_Adapt (Archs.) 0.988 +£0.007 0.972 £0.011 0.751 £ 0.075 0.758
TENT (Archs.) 0.990 + 0.005 0.974 +0.011 0.753 £ 0.072 0.778
Learning rates 0.993 + 0.003 0.977 & 0.006 0.759 + 0.041 0.76
Batch Sizes 0.995 +£0.003 0.982 4+ 0.010 0.831 £+ 0.101 0.809
Check Points 0.992 +0.003 0.976 = 0.008 0.782 £ 0.033 0.838

Table 1: Cosine similarity between mean direction and covariance shape of class-wise penultimate-
layer features, followed by the comparison between theoretical and empirical slope. They are
evaluated on CIFAR10 vs. CIFAR10-C Gaussian Noise, measured across architectures and hyperpa-
rameters. We report their means and standard deviations.
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Experiments

Strong linear trends lead to OOD accuracy estimation.

Dataset Method Error ATC DOC-feat AC Agreement ALine-S ALine-D
Yaoll. 2138 831 1508 11D 5.45 6.02 5.87

SHOT 1540 1.63 4.63 7.63 1.78 0.96 0.77

BN Adapt 1687 369 479 753 1.93 1.12 0.91

CIFARIO-C "' teNT 1543 425 465  7.66 1.79 0.97 0.77
ConjPL 1662 180 616  11.46 2.02 118 1.01

BEA . 0504 458 40 Tes 1.76 0.92 0.72

Vol 000 505 O A 6.96 7.49 722

SHOT 4079 221 544  14.36 2.52 1.64 0.90

BN Adapt 42.69 289 442 1181 2.33 1.43 1.13
CIFARIO0-C ““tent 4111 660 559  14.85 2.65 1.64 0.88
ConjPL. 4279 109 655 2373 2.40 1.67 1.18

ETA 4427 17.15 492  16.49 4.96 1.44 0.81

Vanilla 8041 395  13.72 1734 9.06 6.00 5.95

BN Adap €905 721 263 336 3.91 6.16 6.09

ImageNet-C TENT 56.58 5.98 6.54 12.70 7.48 4.62 4.57
BfA %6 101 Jo1 0 s 8.02 3.66 3.72

SAR 4330 5.39 86l 1168 5.51 5.19 4.17

L W e e 0 e s 12.88 13.46
WIL),,DS TENT 14.37  3.00 3.43 6.94 6.49 2.29 2.27
; Y. 6l a0 4.38 6.85 5.33 224 1.42
o Nanilla. 5027 L) 5 e 3.00 3.53 2.82
N TENEL 0 S5 s g 259 296
ETA 4649 6.6l 340 2934 4.62 2.14 2.82

15



Experiments

Strong linear trends lead to unsupervised model validation.

HyperParameter CIFAR10-C ImageNet-C
MixVal ENT IM Corr-C SND Ours MixVal ENT IM Corr-C SND Ours
Architecture 2.31 1.06 1.06 21.71 2.77 s 6.22 096 047 2632 20.60 0.75
Learning Rate 6.97 8.88 224 11.56 1.87 0.72 12.75 2049 149 20.18 12.61 9.70
Checkpoints 3.21 0.0 0.0 .05 346 0.05 — — — — — -
Batch Size 7.85 332 096 3237 568 0.77 1429 4231 099 4231 4231 5.61
Adapt Step 0.85 0.0 0.0 1.02 0.0 s 1.85 1.94 1.25 3.09 2.17  0.30
Average 4.23 265 085 1443 275 0.36 8.77 1642 1.05 1443 2297 40
HyperParameter ImageNet-R Camelyon17-WILDS
MixVal ENT IM Corr-C SND Ouwurs MixVal ENT IM Corr-C SND Ours
Architecture 1.75 0.62 062 2217 2217 0.85 28.87 1.03 1.03 28.87 28.87 0.85
Learning Rate 3.12 10.16 4.73 19.16 19.16 2.8 0.91 48.37 46.41 4837 4837 1.14
Batch Size 1.83 3588 0.08 3588 3588 1.74 0.0 46.67 46.67 4045 4045 1.37
Adapt Step 1.07 1.07 1.07 1.07 1.07 0.0 2.17 33.12 0.0 33.12 33.12 pmis
Average 1.94 14.18 1.62 1957 19.57 BiEyl 7.98 3229 2352 37.70 37.70 062
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