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In this study, we explore the in-context learning compression vector 
and propose novel methods for its optimization and aggregation.
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In-context learning compression vector

 Recent work[1][2] shows that task information from ICL is stored in the early transformer layers

 The ICL vector enables the model to perform In-Context Learning without requiring explicit
demonstrations.

[2] Function Vectors in Large Language Models

[1] In-Context Learning Creates Task Vectors
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In-context learning compression vector

 Recent work shows that task information from ICL is stored in the early transformer layers

 The ICL vector enables the model to perform In-Context Learning without requiring explicit
demonstrations.

However, the working mechanisms and optimization of 
these vectors are yet to be thoroughly explored.
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In-context learning compression vector

 Recent work shows that task information from ICL is stored in the early transformer layers

 The ICL vector enables the model to perform In-Context Learning without requiring explicit
demonstrations.

1. Why do these ICL vectors work?

2. How can we improve the performance of these ICL vectors?
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Classic template of ICL: 
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Classic template of ICL: 

Output attention activation of the last separate token: 
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Classic template of ICL: 

Output attention activation of the last separate token: 

Omit the softmax operation  and the scaling factor: 
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back-propagated errors: 
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back-propagated errors: 

It can be inferred that the output activation can be regarded as parameters trained 
via gradient descent which utilizes the demonstrations as training instances.
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back-propagated errors: 

State vector:
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 Extraction to obtain the state vector from an ICL feed-forward pass.

 Intervention to enable ICL tasks without any demonstrations

 Progressive Optimization to enhance the state vector's effectiveness

 Divide and Conquer Aggregation to derive state vectors from multiple examples
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 Extraction to obtain the state vector from an ICL feed-forward pass.

 Intervention to enable ICL tasks without any demonstrations

 Progressive Optimization to enhance the state vector's effectiveness

 Divide and Conquer Aggregation to obtain state vectors from multiple examples
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 Inspired by model soup and momentum-
based gradient optimization, we introduce 
two methods for state vector refinement: 

 Inner Optimization averages state 
vectors across separator tokens to 
improve robustness within a single pass

 Momentum Optimization iteratively 
updates the state vector by capturing 
changes across separator tokens, 
simulating gradient-based enhancement.

𝑆𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟ଵ 𝑆𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟ଶ 𝑆𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟୬ 𝑆𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟∗
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 For large demonstrations that exceed model 
input limits, we propose a divide-and-
conquer (D\&C) aggregation method. This 
groups demonstrations into intermediate 
state vectors, which are then aggregated, 
allowing effective compression and 
representation of extensive ICL examples.
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 Inner optimization method significantly 
improves the performance and 
robustness of the state vector compared 
to task and function vectors, reducing 
sensitivity to variations in demonstrations

 Momentum optimization further 
enhances the inner-optimized state 
vector, achieving top performance 
across settings and improving 
robustness, especially in zero-shot tasks. 

Optimization result
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 Our experiments demonstrate 
that both D\&C and average 
aggregation improve as the 
number of examples increases, 

 D\&C aggregation surpasses 
average aggregation with 
multiple examples. 

Aggregation result
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 Typical first-order gradient optimization are not as effective as momentum optimization

Ablation with Other Optimization Method
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 State vectors corresponding to the examples occupying the same position tend 
to form distinct clusters.

 As the example position increases, clusters shift, suggesting the model gradually 
accumulates task-specific information.

Qualitative Study
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• In this paper, we reveal that ICL compressed vector can be viewed as parameters trained 
through gradient descent on the demonstrations. Then, we introduce the concept of state 
vector coupled with optimization and aggregation methods to enhance the capability of 
state vector and conduct comprehensive experiments across two popular LLMs and 
multiple tasks to support our claim. Our approach shows the ability to compress context 
while maintaining lower variance. 
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