
In-Context Learning State Vector with
Inner and Momentum Optimization

Dongfang Li, Zhenyu Liu, Xinshuo Hu,
Zetian Sun, Baotian Hu*, Min Zhang

Email: liuzhenyuhit@gmail.com

Harbin Institute of Technology (Shenzhen),

Shenzhen, China

1 Presented at NeurIPS 2024*Corresponding author

4 Conclusion

2 Methodology
• Formalization
• Method

3 Experiments
• Setting
• Results

1 Preamble
• Overview
• Motivation

CO NT ENT S

Preamble
1
• Overview

• Motivation

1.1 Overview

4NeurIPS 2024

In this study, we explore the in-context learning compression vector
and propose novel methods for its optimization and aggregation.

1.2 Motivation

5NeurIPS 2024

In-context learning compression vector

 Recent work[1][2] shows that task information from ICL is stored in the early transformer layers

 The ICL vector enables the model to perform In-Context Learning without requiring explicit
demonstrations.

[2] Function Vectors in Large Language Models

[1] In-Context Learning Creates Task Vectors

1.2 Motivation

6NeurIPS 2024

In-context learning compression vector

 Recent work shows that task information from ICL is stored in the early transformer layers

 The ICL vector enables the model to perform In-Context Learning without requiring explicit
demonstrations.

However, the working mechanisms and optimization of
these vectors are yet to be thoroughly explored.

1.2 Motivation

7NeurIPS 2024

In-context learning compression vector

 Recent work shows that task information from ICL is stored in the early transformer layers

 The ICL vector enables the model to perform In-Context Learning without requiring explicit
demonstrations.

1. Why do these ICL vectors work?

2. How can we improve the performance of these ICL vectors?

Methodology
2

• Formalization

• Method

2.1 Formalization

9NeurIPS 2024

Classic template of ICL:

2.1 Formalization

10NeurIPS 2024

Classic template of ICL:

Output attention activation of the last separate token:

2.1 Formalization

11NeurIPS 2024

Classic template of ICL:

Output attention activation of the last separate token:

Omit the softmax operation and the scaling factor:

2.1 Formalization

12NeurIPS 2024

back-propagated errors:

2.1 Formalization

13NeurIPS 2024

back-propagated errors:

It can be inferred that the output activation can be regarded as parameters trained
via gradient descent which utilizes the demonstrations as training instances.

2.1 Formalization

14NeurIPS 2024

back-propagated errors:

State vector:

2.2 Method

15NeurIPS 2024

 Extraction to obtain the state vector from an ICL feed-forward pass.

 Intervention to enable ICL tasks without any demonstrations

 Progressive Optimization to enhance the state vector's effectiveness

 Divide and Conquer Aggregation to derive state vectors from multiple examples

2.2 Method

16NeurIPS 2024

 Extraction to obtain the state vector from an ICL feed-forward pass.

 Intervention to enable ICL tasks without any demonstrations

 Progressive Optimization to enhance the state vector's effectiveness

 Divide and Conquer Aggregation to obtain state vectors from multiple examples

2.2 Method

17NeurIPS 2024

 Inspired by model soup and momentum-
based gradient optimization, we introduce
two methods for state vector refinement:

 Inner Optimization averages state
vectors across separator tokens to
improve robustness within a single pass

 Momentum Optimization iteratively
updates the state vector by capturing
changes across separator tokens,
simulating gradient-based enhancement.

𝑆𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟ଵ 𝑆𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟ଶ 𝑆𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟୬ 𝑆𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟∗

2.2 Method

18NeurIPS 2024

 For large demonstrations that exceed model
input limits, we propose a divide-and-
conquer (D\&C) aggregation method. This
groups demonstrations into intermediate
state vectors, which are then aggregated,
allowing effective compression and
representation of extensive ICL examples.

Experiments
3

3.1 Experimental Setting

20NeurIPS 2024

 Inner optimization method significantly
improves the performance and
robustness of the state vector compared
to task and function vectors, reducing
sensitivity to variations in demonstrations

 Momentum optimization further
enhances the inner-optimized state
vector, achieving top performance
across settings and improving
robustness, especially in zero-shot tasks.

Optimization result

3.1 Experimental Setting

21NeurIPS 2024

 Our experiments demonstrate
that both D\&C and average
aggregation improve as the
number of examples increases,

 D\&C aggregation surpasses
average aggregation with
multiple examples.

Aggregation result

3.1 Experimental Setting

22NeurIPS 2024

 Typical first-order gradient optimization are not as effective as momentum optimization

Ablation with Other Optimization Method

3.1 Experimental Setting

23NeurIPS 2024

 State vectors corresponding to the examples occupying the same position tend
to form distinct clusters.

 As the example position increases, clusters shift, suggesting the model gradually
accumulates task-specific information.

Qualitative Study

Conclusion
4

4 Conclusion

25NeurIPS 2024

• In this paper, we reveal that ICL compressed vector can be viewed as parameters trained
through gradient descent on the demonstrations. Then, we introduce the concept of state
vector coupled with optimization and aggregation methods to enhance the capability of
state vector and conduct comprehensive experiments across two popular LLMs and
multiple tasks to support our claim. Our approach shows the ability to compress context
while maintaining lower variance.

Thank You!

Email: liuzhenyuhit@gmail.com

2626 Presented at NeurIPS 2024

