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Transductive vs. inductive prediction
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Popular in few-shot learning

Transductive
(joint test-time prediction)

[Finn et al., ICML'17]
(MAML: Transductive BatchNorm)

[Dhillon et al., ICLR’20]
(Entropy Minimization)

[Ziko et al., ICML'20]
(Laplacian Regularization)

[Boudiaf et al., NeurIPS’20]
(Information Maximization)



TransCLIP: Transductive Inference for VLMs
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TransCLIP: Transductive Inference for VLMs
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TransCLIP: Transductive Inference for VLMs
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Implementation

Runs in few seconds on ImageNet!

Performance  Runtime
UPL* 69.8 >150 min
TransCLIP-ZS 70.3 14.4 sec

*Unsupervised Prompt Learning (UPL) adapted for transduction

Just a few lines of code, check our Github repository:
https.//github.com/MaxZanella/transduction-for-vims

Algorithm 1 TransCLIP

Require: A set of image embeddings (f;)1<i<w, a set of textual class embeddings (ti)1<r<k, T

<

12:
13:

the temperature of the CLIP model.
Wi j £ szf»'. Va,;

Vi< o(tft)) Vi

py. < mean{f; sty =k,i € SJ¥ Vk
diag(X) « 17

Zi }A’.!; Vi

while (1), (2) and (3) not converged do

while (1) not converged do
37, exp(log(pi k) + X ;e p Wijzj,k)

> Affinity measure, truncated with top-3 values

> Initial predictions, ¢ the softmax function

> Class centroids initialization

> Covariance matrix initialization, d is the emb. dim.
> Initial assignments

> Block-wise updates loop

> z-update loop

Zik ¢ Dot U3 exP(log(p; g )+ 5 ep Wi 25 kt) Vivk > (1) z-step
end while
1, — BT 2ies “rfit o7 e ik Vk > (2) p-ste
’ k %Ziﬁs zi,k+ﬁ 2-&&&2 Zik ’ !J’ b p
dlag(E) < % Zif_‘S Zk z‘t’,}.‘.(fﬁ\_ﬂk}z"f'“_‘lgl Z‘:CQ Zk ze‘.,k(fﬁ._ﬂ'k)z [) (3) E—S[Cp
v+1
end while

return argmax;, (z) > Prediction with assignment variables




Results in short
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Works across various architectures and sizes!



Results in short

Can be used on top of zero-shot models AND few-shot methods!
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Also In the main paper

* Convergence guarantee of the solving procedure

* Detailed results on various settings (TransCLIP-ZS)
* On top of zero-shot model

* On top of prompt learning and adapter few-shot methods
* Cross-dataset transferability

* Domain generalization on ImageNet and variants
* Extension for few-shot learning (TransCLIP-FS)
* Scaling to larger VLMs (up to 8 billion parameters)
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