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Bac kg round semantic Segmentation Under Distribution Shifts.

Domain Generalization (DG) Techniques focus on generalizing to shifts.

- e.g., different weather or object attributes.

Out-of-distribution (OOD) Detection Techniques focus on detecting - shifts.

- e.g., anomalies or novel objects.

Test image with covariate Test image with semantic
shifts (Eg. ACDC) shifts (Eg. SMIYC)

Training set (Eg. Cityscapes)



Bac kg round semantic Segmentation Under Distribution Shifts.

Domain Generalization (DG) Techniques focus on generalizing to shifts.

- e.g., different weather or object attributes

Out-of-distribution (OOD) Detection Techniques focus on detecting - shifts.

Can a model jointly handle both kinds of distribution shift?

Semantic Shift

Training set (Eg. Cityscapes) Test image with both
covariate and semanti shifts.




Challe NEES semantic Segmentation Under Multiple Distribution Shifts.

() Domain Generalization (DG) Techniques fail to identify unknown objects.

() Out-of-distribution (OOD) Detection Techniques fail to generalize to unknown domains.

9 Simple Combination: fail to distinguish two distribution shifts in object level.

RobustNet



Our Goal semantic Segmentation Under Multiple Distribution Shifts.

We jointly study both - and [aYEIfEILE shifts, so that models can:
* generalize effectively to covariate-shift regions, and

 precisely detect semantic-shift regions.

OOD Detection Results (AP) %
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Main ldea

1. Augment training images with various semantic and shifts at both

image and object levels in a coherent way.

e -> Coherent Generative-based Augmentation (CG-Aug)

2. Fully leverage the augmented data, so that the model can distinguish between
the two types of distribution shifts and respond appropriately to each type.

* ->Two-stage noise-aware training.



Coherent Generative-based Augmentation

loriginal Training Set

/ - ”_\ Stage 1: Zero-Shot Semantic-to-Image Generation:
B e ©rf

A. Cut-and-paste the semantic mask of novel objects to the
) training labels.

B. Semantic-to-image generation via a pretrained generative

Text Prompt
e.g., Time, Weather,

Place, 00D model (E.g. ControlNet).

) Stage 2: Automatic filter low-quality synthetic data.

Augmented Training Set



Two-Stage Noise-Aware Training

Segmentation Model

Learnable
Uncertainty
Function

Stage 1: Train a semantic-
exclusive uncertainty function

Aug Image .'X'aug w

based on backbone features.



Two-Stage Noise-Aware Training

Segmentation Model Stage 1: Train a semantic-
exclusive uncertainty function
I I I I based on backbone features.
Imagex
Learnable
Uncertainty

Function

—
IR >
Aug Image x4 —
1. Learnable Uncertianty Function: 2. Relative Contrastive Loss: 7x(z) = max(A—z,0)

Push uncertinty score farther Pull uncertinty score closer
Learnable
Projection Lync = E Ta, (Uo —U;) + E Ta, (Uo —Uc) E Me,i Tag (—(Ue—U;))

OEQOUt,iGQi“ Oeﬂout,ceﬂaug eQaug,ieQin

u(x) = log Z exp f(x)W?.

- Initialize as energy score.




Two-Stage Noise-Aware Training

Segmentation Model
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Stage 1: Train a semantic-
exclusive uncertainty function
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based on backbone features.

Stage 2: Fintune the feature
extractor to align features
associated with domain shifts.




Two-Stage Noise-Aware Training

Aug Image x 4,4

Segmentation Model
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Learnable
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Semantic Prediction

Stage 1: Train a semantic-
exclusive uncertainty function
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based on backbone features.

Stage 2: Fintune the feature
extractor to align features
associated with domain shifts.

Overall Loss:

L = Lunc + 51Llsgg + 6 Lsgg
\

Leeg(y, 2, le Y log ¢



Experimental Setup

* Implementation: DeeplLabv3+ and Mask2Former.

* Datasets:
* Training set: Cityscapes.

e Test set (below): All contain images with both semantic and domain shifts.

Road Anomal SMIYC -RA21 ___SMIYC -RO21

x;'a—

it
e

OOD detection performance

* Metrics: AUROC, AP, FPR@95, mAcc, mloU

ACDC-POC

Both OOD detection and DG performance.




Results on Anomaly Segmentation Benchmarks

Table 1: Results on anomaly segmentation benchmarks: RoadAnomaly, SMIYC-RA21 and
SMIYC-RO21. Our method achieves the best results under both backbones (Best results in Bold).

| | RoadAnomaly | SMIYC - RA21 | SMIYC - RO21
Method | Backbone | AUCT AP?T FPRgs] | APt FPRgs| | APT FPRgs |
Maximum softmax [21] 67.53 1572 7138 | 2797 72.05 | 15.72 16.60
ODIN [28] - - - 3306 71.68 | 22.12 15.28
Mahalanobis [26] 62.85 1437 81.09 | 20.04 8699 | 2090 13.08
Image resynthesis [30] - - - 5228 2593 | 37.71 4.70
SynBoost [13] 8191 3821 6475 | 5644 61.86 | 71.34 3.15
Maximized entropy [6] | DeepLabv3+ - 48.85 3177 | 8547 15.00 | 85.07 0.75
PEBAL [46] 87.63 45.10 4458 | 49.14  40.82 4.98 12.68
Dense Hybrid [17] - 31.39 63.97 | 77.96 9.81 87.08 0.24
RPL+CoroCL [31] 95.72 71.61 1774 | 8349 11.68 | 85.93 0.58
Ours 96.40 74.60 16.08 | 88.06 8.21 90.71 0.26
Mask2Anomaly [42] - 79.70 13.45 88.7 14.60 \ 93.3 0.20
RbA [36] Mask2Former - 85.42 6.92 9090 11.60 91.80 0.50
M2F-EAM [18] - 69.40 1.70 93.75 4.09 92.87 0.52
Ours 97.94 90.17 7.54 91.92 7.94 | 95.29 0.07

We achieve SOTA anomaly segmentation results with both backbones.



Results on ACDC-POC and MUAD

Table 2: Results on ACDC-POC and MUAD. Our model achieves the best performance in both
anomaly segmentation (APT , FPR| ) and domain-generalized segmentation (mloU7 , mAcc?
). Anomaly segmentation methods typically perform worse than the baseline for known class
segmentation, while domain generalization methods fall below the baseline on OOD detection. (Best
results are in bold; results below baseline are in blue.)

Method | Backbone |Technique | ACDC-POC | MUAD
| |OOD DG | APt FPRgs; | mloUt mAcct| APt FPRgs | mloUtT mAcct

Baseline [7] - - 1392 5550 46.89 78.57 | 1.34 72778 2947 68.63
RuleAug [45] - v 1209 7279 48.60 81.79 | 0.99 81.08 29.42 69.22
RobustNet [9] - v | 439 62.65 4741 8241 |227 5864 3218 72.02
PEBAL [46] DeepLabv3+ | v - 120.67 1435 4559 81.28 | 7.81 47.56 29.08 66.41
RPL [31] v /|77.84 120 4635 7896 [27.70 2445 29.86 71.60
OOD + RuleAug [45] v/ [80.65 130 46.76 73.08 |[20.97 20.37 27.83 63.02
Ours v v (8241 1.01 54.12 85.07 |36.08 18.74 31.33 73.13
Mask2Anomaly [42] v - |73.777  3.60 4732 83.10 |39.32 4124 2343 6191
OOD + RuleAug [45] | Mask2Former | v v [82.82 0.79 50.36 82.83 |25.43 41.15 26.27 67.51
Ours v V(9042 046 51.75 83.16 [45.65 24.70 28.44 73.77

Our method achieves the best results in both anomaly segmentation (OOD
detection) and domain-generalized semantic segmentation.



Visualization of Uncertainty Maps
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Figure 3: Comparison of Uncertainty Maps. Our method robustly detects anomalies under covariate
shifts across five datasets (first five columns) and generated data (last column). The previous method
RPL [31] failed to distinguish domain from semantic shifts, producing high uncertainty in both cases.

Our method produces semantic-exclusive uncertainty map.



Ablation Study

Table 3: Impact of CG-Aug and Training Strategy. The proposed coherent generative-based
augmentation consistently enhances the previous OOD method, Mask2Anomaly [42] (M2A for
short). Our fine-tuning strategy makes better use of the data and further boosts the performance.

| RoadAnomaly | SMIYC-RA Val | SMIYC-RO Val
Training ‘ Aug. ’ APT FPRg5 J, ‘ APT FPRos5 \], | APT FPR95 \L
M2A [42] | Default | 79.70 13.45 94.50 3.30 88.60 0.30
M2A [42] | Ours 85.47 22.38 97.96 1.55 89.80 0.12
Ours Ours 90.17 7.54 97.31 1.04 93.24 0.14




Ablation Study

Table 3: Impact of CG-Aug and Training Strategy. The proposed coherent generative-based
augmentation consistently enhances the previous OOD method, Mask2Anomaly [42] (M2A for
short). Our fine-tuning strategy makes better use of the data and further boosts the performance.

| RoadAnomaly | SMIYC-RA Val | SMIYC-RO Val
Training ‘ Aug. ’ APT FPRg5 J, ‘ APT FPRos5 \], | APT FPR95 \L
M2A [42] | Default | 79.70 13.45 94.50 3.30 88.60
M2A [42] Ours 85.47 22.38 97.96 1.55 89.80
Ours Ours 90.17 7.54 97.31 1.04 93.24

Table 4: Ablation Study of CG-Aug. Generating
data with both Semantic-shift (SS) and Domain-
shift (DS) in a coherent manner achieves better
results than other variations. The experiments were
conducted using the Mask2Former backbone and
evaluated on the RoadAnomaly dataset.

| AUCt AP}  FPRgs)

POC [12] (SS) 95.43 83.66 10.33
DS or SS 95.90 87.64 9.28
DS and SS 96.47 89.08 8.16

CG-Aug (Ours) | 97.94 90.17 7.54




Table 4: Ablation Study of CG-Aug. Generating

Ablation Study
data with both Semantic-shift (SS) and Domain-

Table 3: Impact of CG-Aug and Training Strategy. The proposed coherent generative-based Shift (DS) in a coherent manner achieves better

. . . Its th iations. Th i
augmentation consistently enhances the previous OOD method, Mask2Anomaly [42] (M2A for Zf)srllldtlsctttee:lnl,:)stilzlz tzla:ﬁg;;z%xgrpggiﬁgﬁew;z

short). Our fine-tuning strategy makes better use of the data and further boosts the performance. evaluated on the RoadAnomaly dataset.
|  RoadAnomaly | SMIYC-RA Val | SMIYC-RO Val
— AUCt APt  FPRysl
Training | Aug. | APt FPRgs | | APt FPRgs | | APt FPRos |

|
POC[12](SS) | 9543 8366 1033
|

M2A [42] | Default | 79.70 13.45 94.50 3.30 88.60 0.30 DS or SS 9590  87.64 9.28
M2A [42] | Ours 85.47 22.38 97.96 1.55 89.80 0.12 DS and SS 9647  89.08 8.16
Ours Ours 90.17 7.54 97.31 1.04 93.24 0.14 CG-Aug (Ours) | 97.94  90.17 754

Noise-Aware Sample Selection

Two-Stage Training (AP%)

SMIYC-RA Val SMIYC-RO Val
100 100
50 50
0 0

Baseline = Ours-First Stage = Ours-Second Stage = Single Stage
Sel. Map

Please refer to our paper for further analysis and experimental results. il Fittered Region



Thanks for listening !

For more information please refer to our paper and code.




