ON THE TARGET-KERNEL ALIGNMENT: A UNIFIED ANALYSIS
WITH KERNEL COMPLEXITY

Presented by Chao Wang

Joint work with Xin He, Yuwen Wang, and Junhui Wang
November 10, 2024

> tE %

. Shanghai University of Finance & Economics

SUFE TARGET-KERNEL ALIGNMENT NOVEMBER 10, 2024 1/24



Introduction




ON WHAT THE LEARNING RATE DEPENDS

Goal: This work investigates the impact of alignment between the target function of
interest and the model on the performance of the kernel method.

Intuitively, the learning rate of any learning algorithm improves if
e the model complexity of the hypothesis space becomes lower or

e the target-model alignment ' becomes stronger.

Tmeasure of similarity between the hypothesis space and the target function.
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PROBLEM SETUP

e Let {(x;, Y;)}7_, be a collection of covariate-response pairs, where
X1,..,Xp € 2" CRPand Yj,..., Y, € # C R are independent with Y; ~ Py, for each
i € [n]. (Fixed design setting is considered. )

e Given a Lipschitz loss function L(-,-) : R x R — R, the population risk function is
defined as

&(f) :=Eyn [lzn;L (Y5, f(x)) ]

i=1

¢ In the field of learning theory, the target function of interest is defined as the
minimizer of the population risk

f* = argmin, &(f).
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STANDARD KERNEL METHOD

Let Hk be the reproducing kernel Hilbert space (RKHS) induced by a positive
semi-definite kernel function K and || - | x denote the endowed norm in Hx. We

assume f* € Hk in this work.

To estimate the underlying target function f*, we solve the following empirical risk
function plus a penalty term that

f = argmin{f(f) —|—l|]f]|,2(} :
feHk

~

Here, &(f) is empirical risk function.
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KERNEL MATRIX

° letK= {:—.,K(x,-,xj)};jj:1 be the empirical kernel matrix.

e Eigen-decomposition: K=UDU', where D € R™" has diagonal elements
Ui,...,dn > 0 arranging in a descending ordering.

* Polynomial decay case: for o > 1, p; < j~*. (A decreasing o results in an
increasing compacity of the RKHS Hk. )
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TARGET-KERNEL ALIGNMENT

e Let &* = U Sk(f*) with Sx denoting the sample operator, defined as

Su(f) = %(f(m),...,f(xn))T for f € Hy.

e There exist some constants y> 3 and u > 2 such that Y./, éj*zusz < u? for any n.
(A greater value of yimplies a stronger target-kernel alignment.)

¢ Polynomial decay case: for o« > 1 and y> Ly 5,'*2 = j-2ra-1,
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SATURATION EFFECT

Existing result for kernel ridge regression (KRR) 2:

Learning rate : n” 211 with 1 = min{y,1}.

Contradict when y exceeds 1! This phenomenon is known as the saturation effect.

2Caponnetto, A., & De Vito, E. (2007). Optimal rates for the regularized least-squares algorithm. Foundations of Computational Mathematics, 7,
331-368.

3Bauer, F., Pereverzev, S., & Rosasco, L. (2007). On regularization algorithms in learning theory. Journal of Complexity, 23} 52-72:
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WHAT’S NEW

In this work, we are devoted to

@ offering a comprehensive understanding of the impact of target-kernel
alignment on the performance of kernel method from the kernel complexity
perspective;

® providing a theoretically guaranteed solution to eliminate the saturation effect;

@ establishing the minimax lower bound for all y > %
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REDUCED RKHS

From Amini et al. (2022), # let { Wk }ken € Hk be defined such that

v = argmin { || y||x : v € Hk, Sx(¥) = ux},

where uy is the k-column of U. For a given r, define the reduced function space

{Zaklllk a1) .y f)TERr}a
which is an r-dimensional reduced RKHS associated with kernel

Zf, Ik Wk (X)W (X').

4Amini, A., Baumgartner, R., & Feng, D. (2022). Target alignment in truncated kernel ridge regression. NeurlPS, 2024.
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TRUNCATED KERNEL METHOD

The reduced RKHS Hg can be treated as a smaller approximation of the full RKHS H.
Based on H,, a truncated estimator can be obtained by solving

., = argmin { &(f) + A/1I% }

fEHKr

where || - ||x. denotes the endowed norm in H..

o LetK, = {1K:(x;,x;)}7._, be the empirical kernel matrix w.r.t. K;.

ij=1

* K, =UD/U', where D, is diagonal matrix with elements yy,...,i,0,...,0.
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Theoretical Results
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KERNEL COMPLEXITY
A measure of model complexity for RKHS: kernel complexity function, defined as
n 1/2
R(5) = (:,j; min(8%, )"
Fix any 1 € (0,1). A crucial quantity appearing in the error bounds is the critical radius
on, defined as the smallest positive value § satisfying
Clogt 'R(8) < 8211 with 1 =min{y,1}.

Here and throughout, ¢, C are some universal constants with varying values line by
line.

REMARK
The existence and uniqueness of §, can be verified. J
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RESULT FOR STANDARD KERNEL METHOD

THEOREM

Fix any 1 € (0,1). Let n = min{y,1}. Then under certain conditions (specified in our paper),
with probability at least 1 — 1, one has

max{|[f £ £(h)— £(F)} < C(887+27M).

For the polynomial decay case, with A properly chosen, one has a simpler bound that

f < —1\2, 2na_
g(f/’L)_@@(f*) = Hfl_f*”i S C(W) 2na+i .
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KERNEL COMPLEXITY OF THE REDUCED RKHS

e Kernel complexity of the reduced RKHS:

1 1/2
R/(8) = (E;min{52,uj}) .
]:

e Fixany1 € (0,1). The critical radius oy, is defined as the smallest positive value 6
satisfying

Clog1™'R,(8) < 821+,

* R/(6) < R(6) implies 8, < p.

e Learning rate < Lower complexity + approximation error .
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RESULT FOR TRUNCATED STANDARD KERNEL METHOD

THEOREM

Fix any 1 € (0,1). Let n = min{y,1}. Then under certain conditions (specified in our paper),
with probability at least 1 —1, one has

max{H?;“ —f

n
2 F 4
2 sth-er)h<o( st 1 Y g2 ),
~— j=r+1
Estimation error —_———
Approximation bias

For the polynomial decay case, with A and r properly chosen, one has a simpler bound
that

£ 7 log1~1)?\ 2t
50500 = [ |7 = o (L)

SUFE TARGET-KERNEL ALIGNMENT NOVEMBER 10, 2024 16/24



ALGORITHM-FREE LOWER BOUNDS

THEOREM

Let f* defined with squared loss specified, satisfying Y. gj*z ;27 < u?. Suppose that the
RKHS is induced by the regular kernel, and f is any estimator based on the data
{(xi,¥i)}"_,. For 3 <y <1, one has

inf sup B(|F— 13> co) > 1.

f freHg
For y> 1, with r properly chosen, one has

~ 1
inf sup P(||f—f|2>c8p,) > ~.
nf sup P32 081) = 5
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ILLUSTRATION OF THE ESTABLISHED RESULTS
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FIGURE: The exponent rate 6 of the learning rate n—? versus the alignment level y for
different methods.
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THEORETICAL SUGGESTIONS

@ The learning rate for the truncated method can be consistently improved as y
increases, eliminating the phenomena of saturation effect;

® An optimal trade-off between the model complexity and approximation bias can
be attained by the truncated kernel method with r properly chosen;

® The truncated kernel method has a stronger ability to capture the alignment so
that a faster rate compared to the standard kernel method is achieved; (price to
pay: an additional truncated parameter r to tune.)

O The truncated kernel method can be treated as optimal tackling whenever the
alignment level is.
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Numerical Results
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NUMERICAL STUDIES

Sub-goals in this part:

¢ verify the improvement of the truncated kernel method over the standard kernel
method.

e verify a conjecture: lower complexity of the RKHS may result in a potential
mismatch between the model space and the target, consequently weakening the
target-kernel alignment which undermines the learning efficiency.

SUFE TARGET-KERNEL ALIGNMENT NOVEMBER 10, 2024 21/24



NUMERICAL STUDIES

Recall:
2yo

Learning rate of the truncated estimator < n~ 2T,

7=0.3 7=0.5 7=0.7

Log MSE

Log empirical excess risk
Log empirical excess risk

FIGURE: Quantile regression; averaged log MSE and log empirical excess risk for (kernel method) KM
and (Truncated kernel method) TKM versus « for different quantile level z.
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FUTURE DIRECTIONS

There are several directions for future research, two of which are mentioned here to
conclude.

@ general spectral kernel method;

® from fixed design setting to random design setting. (non-trivial!)
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The End

Questions? Comments?
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