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Interactive Decision MakingMachine learning: Predicting patterns

Learning and decision making

Image classification, speech recognition, machine translation

Reinforcement learning: Making decisions

Robotics, game playing, clinical decision systems

Machine learning: Predicting patterns

Learning and decision making

Image classification, speech recognition, machine translation

Reinforcement learning: Making decisions

Robotics, game playing, clinical decision systemsExamples: robotics, games, clinical trails, reinforcement learning, etc.

Goal of this work

Understand the fundamental limits for statistical estimation and in-
teractive decision making problems.
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Decision Making with Structured Observation (DMSO) Framework

Interaction protocol

For each round t = 1, ...,T :
• The learner selects a decision πt ∈ Π, where Π is the decision space.
• The learner receives an observation ot ∈ O sampled via ot ∼ M?(πt), where

O is the observation space.
After T rounds, the learner outputs π̂ ∈ Π and incurs a loss L(M?, π̂).

• M? : Π → ∆(O) is the model of the environment
• Learner is given a model class M ⊆ (Π → ∆(O)) containing M?

• Example: structured bandits/contextual bandits, episodic RL, etc.

• Special case: statistical estimation
• Non-interactive: o1, · · · , oT ∼ M? independently
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Minimax Risk

Minimax criterion

The T -round minimax risk is defined as

min
ALG

max
M∈M

EM,ALGL(M , π̂)

• min over all possible T -round algorithm ALG with output π̂

• max over the worst-case model M ∈ M
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The T -round minimax risk is defined as

min
ALG

max
M∈M

EM,ALGL(M , π̂)

• min over all possible T -round algorithm ALG with output π̂

• max over the worst-case model M ∈ M

Statistical estimation (non-interactive):
• Standard and well-understood in statistics
• Proving upper bound: choosing a particular algorithm
• Proving lower bound: requires specialized techniques

• Le Cam’s two-point method
• Assouad’s lemma
• Fano’s inequality
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Minimax Risk

Minimax criterion

The T -round minimax risk is defined as

min
ALG

max
M∈M

EM,ALGL(M , π̂)

• min over all possible T -round algorithm ALG with output π̂

• max over the worst-case model M ∈ M

Beyond statistical estimation:
• Upper & lower bounds: case-by-case
• Foster et al. [2021] proposes Decision-Estimation Coefficient (DEC) framework,

providing both lower and upper bounds for any DMSO problem
• DEC approach is seemingly different from the classical techniques
• The DEC lower & upper bounds have a gap related to the complexity of

estimation [Foster et al., 2021, 2023]
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Contributions

• A unifying framework for information-theoretic lower bound in statistical
estimation and interactive decision making, which recovers

• Le Cam’s two-point method, Assouad’s lemma, Fano’s inequality
• The DEC lower bound approach

• A novel complexity measure, the Fractional Covering Number

• A new lower bound for interactive decision making (and complements the
DEC lower bound)

• A unified characterization of learnability for any structured stochastic bandit
problem

• Polynomially matching lower and upper bounds for any convex model class
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Fractional covering number

Fractional covering number

Nfrac(M,∆) := inf
p∈∆(Π)

sup
M∈M

1
p(π : L(M , π) ≤ ∆)

.

• Measuring the best possible coverage over ∆-optimal decisions
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Nfrac(M,∆) := inf
p∈∆(Π)

sup
M∈M

1
p(π : L(M , π) ≤ ∆)

.

• Measuring the best possible coverage over ∆-optimal decisions
• Dual form of the fractional cover

Theorem (Fractional covering number lower bound; Informal)
For a T -round algorithm to achieve risk ≤ ∆, it is necessary that

T ≥ Ω(logNfrac(M,∆)/CKL),

where CKL is the radius of the model class M under KL divergence.

• Complementary to the DEC lower bound
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Fractional covering number

Fractional covering number

Nfrac(M,∆) := inf
p∈∆(Π)

sup
M∈M

1
p(π : L(M , π) ≤ ∆)

.

• Application 1: bandit learnability (and beyond)
• Observation: fractional covering number also provides an upper bound!
• There is a brute-force algorithm that returns a 2∆-optimal decision using

T ≤ Õ
(

Nfrac(M,∆)

∆2

)
rounds

Theorem (Bandit learnability)
A class M of stochastic bandits (with Gaussian rewards) is learnable with finite T if
and only if Nfrac(M,∆) < +∞ for all ∆ > 0.
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Fractional covering number

Fractional covering number

Nfrac(M,∆) := inf
p∈∆(Π)

sup
M∈M

1
p(π : L(M , π) ≤ ∆)

.

• Application 1: bandit learnability (and beyond)
• Application 2: tighter upper bound for convex class
• ⇒ Polynomially matching lower and upper bounds for convex model class
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Thanks!
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