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Background

Fine-Tuning Vision-Language Models

* Vision-Language models such as CLIP have gained widespread adoption in various classification tasks.
* Despite its good zero-shot performance, fine-tuning becomes necessary when the data distribution of
downstream tasks significantly deviates from the CLIP training source.

Training Source Foundation Model Noisy Datasets
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Background

Learning from Noisy labels: the given label varies from true class

true positive synthetic label noise web label noise

* Fine-tuning CLIP necessitates perfectly labeled
datasets which may not be readily available in
many real-world tasks.

Mini-lImageNet

naid
Ladybug

* To mitigate the negative impact of noisy labels,
researchers have proposed various approaches
for learning with noisy labels.

Stanford Cars

* However, the exploration of this problem in the
context of CLIP adaptation remains limited.

The Model Fine-tuning Paradigms
 Full fine-tuning (FFT): modifies all model parameters.
* Parameter-efficient fine-tuning (PEFT): modifies a few extra parameters, such as LoRA and VPT.

What is the most effective paradigm for vision-language model adaptation with noisy data?

L'i-"/y:“ z:_t:-—-u* https://research.google/blog/understanding-deep-learning-on-controlled-noisy-labels/ 4
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Initial Findings

We utilize three fine-tuning approaches to adapt
CLIP on both noisy and clean datasets

» FFT: full fine-tuning for visual encoder and an additional
linear head for classification

* VPT: visual prompt tuning for visual encoder and an
additional linear head for classification

* VLPT: prompt tuning for both visual and textual encoder,
with the learned textual prompts for classification

Initial Findings

a) PEFT benefits visual representation learning under
massive noisy labels, i.e., figure (a), (c) and (d).

b) Textual classifier is more robust to noisy labels than
linear classifier, i.e., figure (a).

c) FFT enhances visual recognition on clean datasets, i.e.,

figure (b).
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The Proposed Approach

The Denoising Fine-tuning Framework (DeFT)
—> Data flow [I"] Learnable prompt () Learnable network () Frozen network
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Phase 1: Noisy Label Detection Phase 2: Model Adaptation
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The Denoising Fine-tuning Framework

Phasel: Noisy Label Detection

* Previous methods only use the image modality for sample selection and relies heavily on either the estimated
noise ratio or the threshold, can we utilize the multimodal information in CLIP to enhance noise detection?

« The robustness of parameter-efficient fine-tuning and textual classifier to label noise has been empirically
demonstrated, can we harness this property to better identify noisy samples?

Identifying Noisy Labels with Dual Prompts

(1) Design a class-specific pair of positive and negative

prompts for the textual encoder as prompt; and prompty, :

prompty = [VIT[VIZ[VI5 ... [VI}[CLS]
prompt, = [V]{[VIz[V]5 ... [VIu[CLS]k

(2) The negative prompt serves as a learnable sample-
dependent threshold to induce clean subsets D jzqn:

Deiean = {(x;, y)|sim(I;, T) > @i, y; =k}
@; = sim(l;, Ty)

r.a'/f“ %

Optimization for Noisy Label Detector
(3) Formulating the clean probability of the i-th image:

petean _ exp(sim(I;, T{) /1)
L exp(sim(I;, T})/7) + exp(sim(I;, Ty)/7)

(4) Optimize the parameters of dual prompts in textual
encoder and harness PEFT for the adaptation of visual encoder:

dp NE ln”(pclean, y) + ln”(l _ clean’y)
L= Lgp + Lgim

sim -

log exp(sim(ll, TH)/7)
NZ K exp(sim(l;, T})/7) 8
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The Denoising Fine-tuning Framework

Phase2: Model Adaptation

« Although the learned positive textual prompt can be readily employed for classification, its performance may
be suboptimal on curated clean datasets, as demonstrated in our previous finding.

« With the selected clean samples after phasel,the second phase can be applied universally to a wide range of
pre-trained models, regardless of their backbones.

Model Adaptation using Clean Data Algorithm 1: The Proposed DEFT Framework
1 Input: training dataset D = {(x;,v;)¥, }, PEFT parameters w, pre-trained parameters 0,
warm-up epoch Ty, PEFT epoch T} and FFT epoch T5.

» Learn an additional linear head for classification {7 f233e;¢ Teeraing Noisy Label Detector with PEFT
in the model adaptation phase. 3 | dWarm—up the pre-trained model on noisy dataset D = {(z;, yi)f\il}
4 en

sfort=Ty+1,..7T) do
6 Construct the clean subset D' by Eq. and Eq.

* Remove the PEFT modules in visual encoderand 7 | conpute the total loss £ = £, + Lorr, by Eq, (7 andl Eq.

fully fine-tune the pre-trained model. s | Update current model parameters w, = SGD(D%, £, w;_1)

9 end

// Phase2: Adapting Model on Clean Data with FFT
eXp(Zy) 10 fort=1,2,...., Ty do

lce = —IOg K ) 11 Compute the CE loss /.. for samples in the clean subset pelean
k=1 €XP (Z k ) 12 Update current model parameters 6; = SGD(D" (... 0, 1)

13 end

N VN )
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o gL
@ 3° " "NEURAL INFORMATION
... PROCESSING SYSTEMS

/ d
! \
= s/ %
\ = CEY AT B X
0 o/ L4 x‘.
=, £

Outline

> Experiments

A E L 10



RO 320

g 70 .
;‘:. NEURAL INFORMATION
%% , PROCESSING SYSTEMS

Ry

Experiments

Performance for Noisy Label Detection Performance for Image Classification
Method ‘ Sym. 0.2 Sym. 04 Sym. 0.6 | Ins. 0.2 Ins. 0.3 Ins. 0.4
CIFAR-100
Sym. 0.2 Sym. 0.4 Sym. 0.6 | Ins. 0.2 Ins. 0.3 Ins. 0.4
Method CE | 86.71/86.70 B84.06/82.60 81.05/7745 | 87.30/87.18 84.60/83.64 78.41/75.66
Prec. Rec. Prec. Rec. Prec.  Rec. | Prec. Rec. Prec. Rec. Prec.  Rec. — ELR | 86.53/86.53 83.66/83.66 78.34/78.34 | 86.61/866]1 85.89/85.80 85.78/85.78
SCE | 86.82/86.82 83.84/83.84 78.90/77.71 | 86.61/86.61 83.99/8320 80.06/7345
CIFAR-100 GMM | 88.49/8849 87.21/8721 8522/8520 | 88.44/8844 87.95/8795 82.14/8211
Label-match 99.83 63.62 99.61 63.85 99.31 63.52 9993 6365 9985 6372 9981 63.69 DEFT  Ours | 89.38/89.35 88.17/88.11 85.81/85.72 | 89.38/89.35 88.68/88.68 85.75/85.74
Smallloss  97.24 9679 9568 9449 9293  90.68 9520 9546 94.00 9253 90.33  89.85 Tiny-TmageNet
DEFT (ours) 99.51 97.77 98.75 9791 97.04 97.27 98.47 97.88 9632 97.63 94.08 95.28
o s - AOATGA i ; o e CE | 81.77/81.08 76.53/7652 73.17/71.46 | 80.75/80.71 78.83/78.57 74.80/74.08
A 1227 1098 7307 1342 7411 71659 1327 7242 1232 7510 7375 1543 eer FLR | 794077940 7713/7713  7374/7374 | 7998/7998 77.13/77.13 7374/7374
Tinv-TmaseNet SCE | 79.23/79.23 76.24/76.18 71.76/70.62 | 78.96/78.90 77.80/77.54 T4.47/73.25
y-imag GMM | 8101/81.88 8037/8037 4347/4347 | 81.84/81.79 8126/8126 79.01/79.01
Label-match 9992 60.81 99.83 60.79 99.50 60.66 9991 6058 99.84 60.53 99.76 6047 DEFT  Ours | 82.91/8291 8248/8237 80.60/80.59 | 83.37/8333 82.69/82.65 80.52/80.49
Small-loss 97.25 9693 9533 9448 92.63 90.89 9474 95.17 9366 9235 9041 89.71 Stanford.C
DEFT (ours) 99.50 96.00 98.78 9597 9721 9544 9921 9621 97.80 9580 9545 95.77 tantord-t-ars
A $2.95 1093 1345 1149 1458 1455 1447 11.04 1414 1345 1504 16.06 CE | 89.75/80.74 85.10/8489 71.70/71.55 | 89.13/89.06 85.94/85.92 80.59/80.59
— ELR | 86.61/8661 7698/7698 G1.58/G1.58 | 8440/8440 83.11/83.11 7597/7584
Stanford-Cars SCE | 91.11/91.11 87.73/8745 79.09/79.09 | 90.34/90.34 87.35/86.23 83.50/80.69
Label-match 99.97 6034 99.86 6027 9970 6071 99.85 6034 9982 6032 9980 60.25 OMM | %0.10790.08 831478310 369073690 | 88.13/88.10 83978533 7876/78.72
Small-loss ~ 96.92  96.56  93.71 9321 8946 8779 9694 9778 9672 9596 9525 94.48 DEFT _ Ours | 92.13/92.12 90.75/90.75 85.72/8545 | 92.19/92.15 90.77/90.77 89.74/89.68
DEFT (ours) 98.72 99.56 9898 98.56 98.58 95.62 99.02 99.09 9896 98.15 98.75 97.71 CUB-200-2011
A t1.80 13.00 1527 1535 1912 178 1208 1131 1224 1219 1350 T13.23 CE | 80.76/80.76 73.09/72.87 55.42/5521 | 80.36/80.25 75.80/75.53 69.62/69.62
CUB-200-2011 — ELR | 77.70/77.70 68.26/6826 50.17/49.88 | 78.32/78.32 73.16/73.08 63.57/63.34
Bt SCE | 82.81/82.74 78.12/77.87 63.31/63.31 | 81.91/81.91 7831/78.03 71.25/70.95
Label-match 9992 5326 99.74 53.13 9946 53.02 9996 5339 9996 5332 9974 53.69 GMM | 75.79/75.73  64.39/64.38 42.84/42.84 | 75.73/75.65 69.95/69.95 56.13/55.80
Small-loss 96.74 96.32 9369 9284 84.10 82.01 96.91 97.33 9649 9559 9398 9396 DEFT  Ours | 83.05/83.03 79.24/79.13 73.08/73.08 | 82.53/82.50 81.39/81.39 79.34/79.24
DEFT (ours) 99.04 97.01 96.76 95.60 93.88 96.43 99.15 9745 9793 96.85 96.03 97.11
A 1230 17069 1307 1276 1978 11442 1224 1012 1144 1126 1205 713.15 Table 2: Test accuracy (%) on synthetic datasets with symmetric and instance-dependent label noise.
Table 1: On each dataset, we compare the Precision (%) and Recall (%) of DEFT with CLIP label- Dataset | CE ELR SCE GMM RoLT UNICON LongReMix ProMix | DEFT (Ours)
match and small-loss to evaluate the clean sample selection performance. A is the difference between CIFAR-100N | 72.41  72.83 7252 7606 7591  77.68 73.94 75.97 79.04
ClothingIM | 69.75 7214 7049 7003 7046 7038 70.62 70.71 72.44
the performance of DEFT and small-loss. WebVision | 84.64 79.32 8288 84.88 84.12  84.56 84.96 84.44 85.12

Table 3: Test accuracy (%) on datasets with real-world label noise.
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Further Analyses

Necessity of Model Adaptation

We conduct ablation studies and report the test
accuracy across varying noise ratios for variants.
Employing FFT for model adaptation is more

effective in mitigating significant domain shifts.

DeFT for Various Pre-trained Models

DEFT can seamlessly integrate with various pre-
trained visual backbones during the model
adaptation phase.

'.‘,T?:é;&.‘"
ﬁ. NEURAL INFORMATION
%t , PROCESSING SYSTEMS

e

Architecture | CE GCE ELR TURN | DEFT (Ours)
ResNet-50 [11]] 66.02 66.19 66.19 66.31 70.82
MAE-VIiT-B [10] | 61.31 60.80 61.51 61.96 65.23
ViT-B/16 68.98 69.74 68.73 70.28 69.84
ConvNeXt-T [27] | 68.80 6892 68.52 69.53 71.68
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Methods: we delve into a new landscape for learning with noisy labels,
departing from the classic single-modal toward a multi-modal regime.

Versatility: DeFT is robust to various types of label noise, generalizable to many
pre-trained models, and does not require the dynamics of training samples.

Effectiveness: we investigate the effectiveness of DeFT on a wide range of
synthetic and real-world datasets, showing its superior performance in both
noisy label detection and image classification tasks.

Future work: we hope our work will inspire future research toward multi-modal
noisy label detection.

14
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