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Background: Unsupervised Skill Discovery
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Learn reusable behaviors through reward-free interaction

- Represented as a policy 𝜋(𝑎|𝑠, 𝑧) conditioned on the skill 𝑧. 

Key idea: visit distinguishable states for each 𝑧.

Eysenbach, Benjamin, et al. "Diversity is all you need: Learning skills without a reward function." 



Background: Unsupervised Skill Discovery
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Drawbacks:

- Skills are not semantically meaningful.

- Do not scale to environments with 

multiple state factors (e.g., objects).

https://seohong.me/projects/csd/



Motivation

Drawback Causes:

- As state space grows exponentially

w.r.t. state factors, it is challenging 

to reach all possible states.

- In addition, many states are not 

very meaningful for downstream 

tasks.
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Motivation

Another way to represent skills: interactions

- Many skills can be described as interactions 
between state factors.

- For example, driving a nail is an interaction 
between a human, a hammer and a nail.

- Factor interactions are naturally semantically 
meaningful.

- For many downstream tasks, inducing 
interactions is more useful than visiting some 
random states.

- Moreover, # inducible interactions << # 
reachable states.

- Hence, it is easier to learn skills to cover the 
interaction space.
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Method: skill representation

We propose that, for multi-factor state environments, 

skill discovery should learn to induce diverse interactions between state factors.
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Method: skill representation

skill discovery should learn to induce diverse interactions between state factors.

𝑧 = (𝑔, 𝑏)
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Method: high-level graph selection policy
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Graph selection policy

It guides the exploration and training of skill policy

visit novel graphs
practice 

underdeveloped skills

diversity-based exploration

new skills to learn



Method: low-level skill policy
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The skill policy                    , where z = (g, b), has two goals:

● achieve the desired graph g

● then, further change s to diverse values while maintaining the graph
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Method: pipeline - skill learning



Method: pipeline - skill learning



Method: pipeline - skill learning



Method: pipeline - skill learning



Method: pipeline - task learning
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