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Multiple Instance Learning (MIL)

Training data: pairs of the form (X,Y).
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¢ Instance labels (not observed): {y1,...,yn} C {0,1}.
® Bag label (observed): Y = max{y1,...,yn} € {0,1}.
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Training data: pairs of the form (X,Y).
® Bag: X = [xl,...,xN]T € RV*P %, e RY.
¢ Instance labels (not observed): {y1,...,yn} C {0,1}.
® Bag label (observed): Y = max{y1,...,yn} € {0,1}.
Test time: given a new bag, we want to predict
¢ the bag label (classification task),
¢ the instance labels (localization task).

Why is it useful? Minimal annotation effort.



MIL in medical imaging

Figure: Whole Slide Image (WSI, bag) and labeled patches (instances).
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Figure: Whole Slide Image (WSI, bag) and labeled patches (instances).
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Figure: Computerized Tomography (CT) scan (bag) and labeled slices (instances).
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® Attention values (f,, € R) are used as a proxy to estimate the instance labels.
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® Interactions have shown to improve the classification performance.
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® Attention values (f,, € R) are used as a proxy to estimate the instance labels.
® Interactions have shown to improve the classification performance.

® Problem: previous works have been designed to target the classification task... what
about localization?
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Figure: Map of labeled instances.

® Instance labels show spatial dependencies: an instance is likely to be surrounded by
instances with the same label.
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Figure: Map of labeled instances.

® Instance labels show spatial dependencies: an instance is likely to be surrounded by
instances with the same label.

® Attention values f,, should inherit this smoothing property... How?
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Method: modelling the smoothness

Let f € RY be attention values; interpreted as a function defined on a graph.
Dirichlet energy £p. Measure of the variability of a function defined on a graph.
Goal. Output f with low Ep(f).

Bounding &p (f).
® &p (f) is bounded by the Dirichlet energy of previous layers.

e Consequence: We can act on f itself and/or on the output of previous layers.
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Method: Smooth operator (Sm)

Given U € RV*P the Smooth operator (Sm) is defined as
sm(U) = (I+4L)"' U.
Theoretical guarantees. If L is the normalized Laplacian matrix, then
Ep (Sm(U)) < &p (U).
Consequence: It can be used in the different layers of a neural network to decrease p.
Avoiding matrix inversion. It holds that
Sm (U) = lim G(t),

t—o00

G0)=U; G{t)=a(I-L)G(t-1)+(1-0a)U.



Method: the proposed model
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Experiments

3 different medical imaging datasets:

RSNA (CT scans), PANDA (WSIs),
and CAMELYON16 (WSIs).

4 different feature extractors, with

and without self-supervised learning.

Up to 13 different SOTA methods
considered for comparison.

Results: the proposed methods with
Sm achieve the best performance in
localization and remain very
competitive in classification.

Table: Average rank (lower is better).

Instance Bag

localization classification
SmAP 1.500051s  1.8330.753
Without ABMIL 2.500; 995 2.5001.049
global CLAM 4.1671 309 4.5000.837
interactions DSMIL 4.3330.516 4.1670.753
DFTD-MIL  2.5001 049 2.000; 965
SmTAP 1.500, 905  1.8330.9s3
With TransMIL  3.0831420  4.0830.017
global SETMIL 3.6670.816 3.5832.010
interactions GTP 3.9174 429 2.7500.987
CAMIL  2.833, 50 2750 1.4




Experiments: WSI visualization.
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Figure: Attention maps on CAMELYON16. The novel Sn'TAP produces the most accurate map.
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Conclusions

e We draw attention to the localization task: MIL methods need to be evaluated
at the instance level.

® The proposed Sm introduces local interactions in a principled way.

® [t achieves the best performance in localization while being highly competitive in
classification.

e Future work: MIL methods need to quantify uncertainty so they can be deployed
in clinical settings.



Thank you!
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