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Introduction 2t

Diffusion models allow people to create visual content with text
prompts for video generation.

Current SOTA Video Generation High-memory consumption
Model is not user friendly Slow inference speed




Video Diffusion models are Memory and:

Computation Intensive

* Video Diffusion models need to
inference multiple frames in a forward
computation, leading ultra-high
memory usage.

* High resolution video generation are
slow in inference and usually get out-
of-memory error.

* Unfeasible for consumer GPUs.

Peak Memory (GB)
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Streamlined Inference Framework ™

-

* Training Free

* Reduce Denoising Steps

* Preserving models performance




Feature Slicer and Operator
Grouping with Pipeline

* Video Diffusion Models commonly

adopt spatial-temporal architecture.
e Feature Slicer: H I o I D
» Spatial layer — slicing temporal dim (@ origina

* Temporal layer — slicing spatial dim

e Operator Grouping and pipelining:
° Group as much as Out-of-place Operation A
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(b) Operator Grouping with Feature slicing
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(c) Pipeline
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Step Rehash e
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* The high similarity of features
after temporal layers.

* By reuse the high similarity
features, we can reduce
inference time.

* where-to-skip = when-to-skip
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Experiments Results !

Table 1: Comparison of our Streamlined Inference with baseline methods in video visual quality (on
UCF101), PM (Peak Memory), and latency (measured with 50 runs with the average value).

512 x 512 576 x 1024
M D, CLIP-

Model ethod FVvD| C Scoret M Latency BM Latency

SVD Original  307.7 2925 | 2091G  10.23s | 39.49G  23.29s

wpe14  NaiveSlicing 11275 26.32 812G 31.85s | 10.72G  65.56s

Ours 340.6 28.98 13.67G 7365 | 23.42G  14.24s

SVDXT Original ~ 387.9 28.18 [ 31.97G 17.05s | 61.17G ~ 40.77s

wp—or  NaiveSlicing 2180.0  24.42 812G 59.86s | 10.72G  121.82s

Ours 424.7 27.94 1937G  12.10s | 36.32G  2547s

i Original 7587 28.89 | 21.83G  9.65s | 41.71G  24.38s

Mpere ™ Naive Slicing 24039 26.63 722G 19.98s | 9.92G  38.69s

Ours 784.5 28.71 751G 7.08s | 11.07G  15.15s
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Visual Quality

Original

Ours

AnimateDiff Stable Video Diffusion
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More Results
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Thank You!
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