DeepDRK: Deep Dependency Regularized Knockoff for Feature Selection

Introduction

> (oal: Select the features associated with the linear response Y, given the

covariate design matrix X, with a controlled false discovery rate (FDR) under
the Model-X knockoff framework.

> Challenges: Unknown data distribution and small sample size.
> Approach: Deep generative models have been used for knockoft generations
for non-Gaussian data:

@ Deep Knockoff [4], Knockoff GAN [2], sRMMD [3], and DDLK |6]

@ Performance declines as the sample size decreases and the data distribu-
tions become more complex.
> QOur approach: DeepDRK generates knockofls with a novel transformer-
based generator and a random perturbation technique.

Preliminary

> Core ingredients: Learned knockoff variables X and knockoff statistics
w;((X, X),Y) for j € [p].

> Two required conditions for the knockoff variables and the knockoff statistics:
@ Swap property: (X, X)Swap@)i(X, X), VB cCp;

@ Flip-sign property:

fjé¢n
—w;((X,X),Y), ifjeB

> Feature selection with controlled FDR at nominal level ¢:
@® Selection rule: § = {w; > 7,};

. 1+ 'I’U}jé—t
® Threshold: 7, = min;. {t : max‘(ﬂ{j:ijt}}»'D < q}.

Methodology-Training Stage
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> The Knockoff Transformer takes X and i.i.d. standard Gaussian random

Training Stage ]

variables Z as the inputs to generate the knockoffs X :
> Use K swappers {S,, }2, to create adversarial environments for testing the
swap property;

> The swap loss Ls1,(X, Xg, {S., }X,) aims to enforce the swap property;

> The dependency regularization loss Lpri(X, Xg) aims to decorrelate the data
X and the knockoff Xj.
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> Training objective:

min max {LSL(X, X@, {Swi}@‘[iﬁ + Lpri(X, Xﬁ)}

0 wi,....wWK

> The swap loss includes three terms:

K
~ 1 - -
Ls1.(X, Xo, {Su}it1) = e > SWD((X, Xy), (X, Xp)s,)
1=1

T )‘1 ' REX(X7 XQ? {Swz}zfil) + >‘2 | £SW&DPGT({S&J¢ zfil)

@ The first term uses sliced Wasserstein distance to measure the distance
between the joint distributions of (X, Xg) and (X, Xj) S

@® The second term measures the variance of the SWDs under different
swap realizations;

@® The third term prevents the mode collapse on the parameters w; of
different swappers:
> Lori(X, X) uses the sliced Wasserstein correlation (SWC) to quantitatively
measure the dependency between X and Xj.

Methodology—Post-training Perturbation

> Perturb the learned knockoff Xj:

NQI?SP =(1—ay) - Xy + a, - Xip,

where X, is the random row permutation of the design matrix X.

> The perturbation aims to reduce collinearity [5].
> Asn — oo, o, — 0.

Results-Synthetic Data
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> Sample size: n = 200 or 2000; data dimension: p = 100
> Model: Y ~ N(X?13,1); feature sparsity: 20
> Nonnull 3; ~ —%— - Rademacher(0.5);
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> F'DR nominal threshold ¢ = 0.1.
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Discussion
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> Compare the means and the standard deviations of the knockoft statistics w;’s;

> Positive shifts in the null knockoff statistics from baseline models cause:

@® smaller thresholds 7, as fewer null statistics are remaining on the negative

L < —t)] |
(L o) = 44

@® [ncrease in the number of false positives given the selection rule § = {w,; >

T}

side (lower |{j : w; < —t}|), where 7, = ming~g {t :

Results—Semi-synthetic Data
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> X drawn from single-cell RNA sequencing (scRNA-seq) [1] and used to sim-
ulate response Y';

> n = 10000 and p = 100.

Conclusion

> We developed DeepDRK for feature selection with controlled FDR for non-
Gaussian data and limited sample size;

> Paper link: https://arxiv.org/pdf/2402.17176v2;

> GitHub: https://github.com /nowonder2000/DeepDRK.
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