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Background

Weather forecasts are important and varied.

Precipitation Nowecasting Medium-Range Forecasts
30min 60min 90min 120min ... lday 3day 5day

Short-term planning Long-term strategic

Should I bring an How to plan maritime
umbrella when going out? trade routes?



Challenge and Motivation

4 )
Al model :
Black-box
\_ v =
weather state weather state
at time t at time t+1

What is the weather state at (t+0.5)?

What physics did the model learn?

Challenge: Existing black-box Al models are unable to generalize at finer temporal scales beyond the
inherent time resolution of the training datasets due to the absence of fine-grained physics modeling.




Challenge and Motivation
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What is the weather state at (t+0.5)? Au = PDESolver, (w,v) | |utros =ur+Aux 0.5
Av = PDESolver, (u, v) Viros = Uy + Av X 0.5

: : Momentum Theorem
What physics did the model learn? Conservation of Energy




Method Overview
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Pipeline
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WeatherGFT € with Multiple Lead Time Training



Pipeline

Specifically, to enable our model to generalize at a finer-grained temporal resolution, we employ PDES to
model the evolution at a finer time scale:

PDE Kernel K (X) = Spprp(X)t; + &
1
X, = K(Xy), where ty = —tiata, m € /A
m

For example,for temperature T, its derivative with respect to time is shown below:
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Calculating Seoe requires the use of differential and integral operations. We designed a fast implementation
of differentiation and integration through convolution and matrix multiplication respectively.
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Pipeline

-Adaptive Router
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TXXP+(1—T)XXN E p y
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I Router ) l forecast lead time
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-Lead Time Conditional Decoder

temp = sin(m -t - W) @ cos(mw -t - W) @ t, where t is lead time




Experiment

-Try to answer the following questions:

(1) How does the model perform on the medium-range forecasting task?

(2) How does the model perform on the generalized 30-minute nowcasting task?

(3) As a hybrid expert model of Al and physics, what roles do they each play?

(4) How do PDE kernel and multi-lead time training contribute to the overall performance?

-Dataset -Hyperparameter
Dataset Train Test Time resolution Hyperparameter Value
WeatherBench v/ v 1-hour Max epoch 50
NASA x Y 30-minute Batch size 4x8 (GPUs)
Learning rate Se-4
Name Description Levels Learning rate schedule  Cosine
ul0  x-direction wind at 10m height  Single Patch size 4xa
v10  y-direction wind at 10m height ~ Single Embedding dimension 1024
t2m  Temperature at 2m height Single MLP ratio . 4
tp Hourly precipitation Single Activation function GLUE
zZ Geopotential 13 Input (0-hour) [4, 69, 128, 256]
q Specific humidity 13 Output (1, 3, 6-hour) [4, 3, 69, 128, 256]
u x-direction wind 13
\% y-direction wind 13
T Temperature 13

The 13 levels are 50, 100, 150, 200, 250, 300,
400, 500, 600, 700, 850, 925, 1000 hPa.




Experiment
-Skillful Medium-Range Forecasts by WeatherGFT
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Experiment

-Generalizing to Fine-grained Time Scale for Nowcasting

30-min 60-min 90-min 120-min

CSIt CSIT RMSEJ | CSIt CSIT RMSEJ] | CSIT CSIT RMSE| | CSIT CSIt RMSE)]

@05 @1.5 tplh @05 @1.5 tplh @05 @1.5 tplh @0.5 @l1.5 tplh
FourCast+ 0.26 0.09 067 | 061 049 024 | 025 0.09 065 | 037 0.26 0.46
FourCast+ 0.20 0.10 0.76 | 0.61 049 024 | 0.11 005 149 | 037 0.26 0.46
Keisler+ 0.25 0.09 0.66 | 0.59 048 0.23 0.25 0.08 066 | 041 0.29 0.35
Keisler+ 0.26 0.13 0.69 | 0.59 048 0.23 0.26 0.13 068 | 041 0.29 0.35
ClimODE+ 0.26 0.09 067 | 062 051 022 |[025 009 066 | 047 034 0.32
ClimODE+ 0.25 0.12 0.67 | 0.62 049 0.21 0.25 0.11 066 | 046 0.32 0.31
WeatherGFT(ours) 0.28 0.17 0.72 | 0.62 050 0.21 | 0.28 0.16 0.71 0.54 0.40 0.27

60-min and 120-min are trained lead times, while 30-min and 90-min are generalized lead times. Gray represents the
results obtained through the frame interpolation model, purple indicates the results obtained through our unified model
without interpolating. For precipitation nowcasting, CSI (Critical Success Index) is the most important metric.




Experiment

-Generalizing to Fine-grained Time Scale for Nowcasting
00:30:00 Error 01:00:00 Error 01:30:00 Error 02:00:00 Error

Ground
truth
FourCast
+
Flavr
FourCast
+
UPR

Keisler

ClimODE
+
Flavr

ClimODE

WeatherGFT
(ours)




Experiment

-Forecasts can Benefit from Physics and Al via WeatherGFT
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Dataset resolutlon (1-hour)
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a) The physical weight of the vast majority of HybridBlocks is significantly higher than the weight of Al, which shows
that in the process of simulating time evolution, the PDE kernel plays a more important role, while the Attention
Block only plays a supportive correction role.

b) The physical weight gradually decreases while the weight of Al increases throughout each hour (dataset time

resolution). This aligns with our underlying motivation, which acknowledges that errors may accumulate over time
in the physics-based evolution.

Consequently, a greater emphasis on Al corrections becomes necessary to compensate for these accumulated errors.



Experiment

-Ablation Studies

30-min | RMSE@1-h | RMSE@6-h | RMSE@3-d

nowcast | t2mJ z500] t2mJ z500] t2mJ z500]

Attent Block X 0.52 18.76 0.73 24.21 1.23 1579
+ PDE Kernel v 0.57 20.43 0.70 21.78 1.22 153.8
+ Muti Time v 0.49 16.66 0.67 21.80 1.14 152.4

150717 1
| —— Attent Block
—— Attent Block + PDE Kernel ]
125\ —— Attent Block + PDE Kernel + Muti Lead Time . . o
_ 1 Multiple lead time training accelerates con vergence and
100k B 1 improves the accuracy of model prediction, as shown in
7 —__ ] | thefigure. We hypothesize that this phenomenon can be
751 1 attributed to the loss backward from different lead times,
j which alleviates the issue of vanishing gradients,
50F allowing the parameters of different layers to quickly
i warm up and improve the expression of the model.
251
0 i | | | |




Conclusion

Most existing data-driven weather forecast methods which operated as black-
box models via purely performing data mapping are unable to generalize at
finer temporal scale beyond the inherent time resolution of the training datasets
due to the absence of the fine-grained physics modeling. This paper proposes a
physics-Al hybrid model to solve this problem. Through the exquisitely
designed PDE kernel, each block in the networks can simulate the evolution of
physical variables at finer-gained time step, while Al plays the role of adaptive
correction, which makes our model capable of generalizing predictions to a
finer time scale beyond dataset. By employing our proposed multi-lead time
training strategy, our model trained on an hourly dataset exhibits remarkable
ability of generalized 30-minute forecasts, achieving SOTA performance in
both medium-range forecast and precipitation nowcast.
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