Kermut: Composite kernel regression for protein variant effects

Peter Mørch Groth*, Mads Herbert Kerrn*, Lars Olsen, Jesper Salomon, and Wouter Boomsma

* Equal contributions

Variant effect prediction

- Variant effects are measurable **changes in protein function caused by mutations** in the amino acid sequence.
- Predicting potentially beneficial or deleterious mutations is crucial for engineering and optimizing proteins,
 e.g., to increase activity and stability.

Reference	VFAHPETL	1.0
Variant 1	VFAHPWTL	0.2
Variant 2	VFAHAETL	1.2
Variant 3	VEAHPETL	1.5

Central question:

How can we predict variant effects given a reference protein and experimental data for a number of variants?

Desiderata

- Supervised model
 - Not all protein properties correlate with zero-shot fitness estimates
 - We want to learn from our data to guide exploration for protein engineering
- Uncertainty quantification
 - Valuable to quantify predictive uncertainties
 - Uncertainties should be well-calibrated
- Leverage pre-trained models
 - We're often working with few labeled sequences

Model of choice: Gaussian processes

- Explicitly uses similarities between datapoints to reason about the function of interest
- Provides predictive uncertainties

Fully specified by **two** components:

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

A mean function

$$m(\mathbf{x})$$

And a covariance function (also known as kernel function)

$$k(\mathbf{x}, \mathbf{x}') = \text{cov}(f(\mathbf{x}), f(\mathbf{x}'))$$

When are variants similar?

- Similarity given local environments
- Use an inverse-folding model to obtain structureconditioned amino acid distributions at all sites
- 1. Local environments should be similar
- 2. Individual mutations should be similar
- 3. Mutates sites should be physically close

Given the wild type and observed variant, what can we say about the following variants?

Kermut: a kernel for modeling mutation similarity

$$k(\mathbf{x}, \mathbf{x}') = \pi k_{\text{struct}}(\mathbf{x}, \mathbf{x}') + (1 - \pi) k_{\text{seq}}(\mathbf{x}, \mathbf{x}')$$

$$k_{\mathrm{struct}}(\mathbf{x},\mathbf{x}') = \lambda k_H(\mathbf{x},\mathbf{x}') \cdot k_p(\mathbf{x},\mathbf{x}') \cdot k_d(\mathbf{x},\mathbf{x}')$$
Site Mutation Distance comparison comparison

$$k_{\text{seq}}(\mathbf{x}, \mathbf{x}') = k_{\text{SE}}(f_1(\mathbf{x}), f_1(\mathbf{x}')) = k_{\text{SE}}(\mathbf{z}, \mathbf{z}') = \exp\left(-\frac{||\mathbf{z} - \mathbf{z}'||_2^2}{2\sigma^2}\right)$$

Embedding comparison

Results

- Supervised ProteinGym benchmark
 - 217 DMS substitutions assays
 - 3 split schemes are defined for each assay with 5-fold CV in each

Results per functional category

- Supervised ProteinGym benchmark
 - 217 DMS substitutions assays
 - 3 split schemes are defined for each assay with 5-fold CV in each

Speed

Dataset	Kermut	ProteinNPT	N	L
BLAT_ECOLX	111s	$\approx 32 \mathrm{h}$	4996	286
PA_I34A1	45s	$\approx 52 \mathrm{h}$	1820	716
TCRG1_MOUSE	19s	$\approx 22 \mathrm{h}$	621	37
OPSD_HUMAN	14s	$\approx 40 \mathrm{h}$	165	348

Conclusion

- Kermut achieves state-of-the-art performance for supervised variant effect prediction
- Provides well-calibrated uncertainties out-of-the-box
- Can be trained and evaluated orders of magnitude faster than competing methods
- Can easily be adapted for new pre-trained models

Limitations

- Does not support insertions and deletions
- Due to scaling, GPs scale cubically with number of datapoints*
- Structure kernel models multi-mutants linearly only epistasis via sequence embeddings
- Extrapolation to higher order mutations is difficult and needs further analysis

^{*:} Not a practical concern in most protein engineering campaigns.