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Variant effect prediction

— Variant effects are measurable changes in protein function caused by mutations in the amino acid sequence.

— Predicting potentially beneficial or deleterious mutations is crucial for engineering and optimizing proteins,
e.g. to increase activity and stability.

Reference VF AHPETL 1.0
Variant 1 VF AHPWTL 0.2
Variant 2 VF AHAETIL 1.2
Variant 3 VIE AHPETL 1.5

— Central question:

How can we predict variant effects given a reference protein
and experimental data for a number of variants?




Desiderata

— Supervised model
— Not all protein properties correlate with zero-shot fithess estimates
— We want to learn from our data to guide exploration for protein engineering

— Uncertainty quantification
— Valuable to quantify predictive uncertainties
— Uncertainties should be well-calibrated

— Leverage pre-trained models
— We'’re often working with few labeled sequences



Model of choice: Gaussian processes

— Explicitly uses similarities between datapoints to reason about the function of interest

— Provides predictive uncertainties

— Fully specified by two components:
f(x) ~ GP(m(x), k(x,x))
— A mean function
m(x)

— And a covariance function (also known as kernel function)
k(x,x") = cov(f(x), f(x))

Figure source: https://doi.org/10.1103/PhysRevD.98.063511
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— Use an inverse-folding model to obtain structure-

conditioned amino acid distributions at all sites Given the wild type and observed variant, what can we say
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Kermut: a kernel for modeling mutation similarity

k(x,x") = Tkstruct (X, X') + (1 — ) Kgeq (X, X")

Kstruct (X, X') = Mg (x,X) - kp(x,X) + kq(x,x)
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Results per functional category

— Supervised ProteinGym benchmark
— 217 DMS substitutions assays
— 3 split schemes are defined for each assay with 5-fold CV in each
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Speed

Dataset Kermut ProteinNPT N L

BLAT_ECOLX 111s ~ 32h 4996 286
PA_I134A1 45s ~ H2h 1820 716
TCRG1_MOUSE 19s ~ 22h 621 37
OPSD_HUMAN 14s ~ 40h 165 348




Conclusion

— Kermut achieves state-of-the-art performance for supervised variant effect prediction
— Provides well-calibrated uncertainties out-of-the-box
— Can be trained and evaluated orders of magnitude faster than competing methods

— Can easily be adapted for new pre-trained models

Limitations

— Does not support insertions and deletions

— Due to scaling, GPs scale cubically with number of datapoints”

— Structure kernel models multi-mutants linearly — only epistasis via sequence embeddings
— Extrapolation to higher order mutations is difficult and needs further analysis

*: Not a practical concern in most protein engineering campaigns.



