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Motivation

Whether layers in neural networks collaborate to
strengthen adversarial robustness during gradient
descent?
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Problem Setting

» Binary classification

* Training Set D = {(z:, %)},

Loss function

L(fy)=——

Prediction

Neural Networks

Activation function

fwlz)) > 0.5

<0.5:
Jf‘_i’:(a_j})____ I Sigmoid function

______________________

______________________
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Measure Adversarial Risk by Dirichlet Energy

Theorem 4.1. Given data points (x,y) ~ P and x ~ P, the relationship between adversarial risk
and Dirichlet energy for classifier f with differentiable loss function L is shown as

R (f,7)|SIR(S) L(f)),

]

8)

» The proof is based on 15t
order Taylor’s expansion
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Measure Adversarial Risk by Dirichlet Energy
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(a) Robust Acc.

2-Layer MLPs with width from 24 to 213

el s . . 1
Initialize the weight matrix wg; 3 ~ N (Om)
Let g change from —0.15 to 0.25

Dirichlet Energy of f can be a good representation
It can measure individual layers therefore the correlations
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On Dynamics of Co-Correlation Robustness Decomposition

Theorem 4.5 (Robustness Decomposition). Given the same assumption in Definition 4.2| the mea-
surement for overall adversarial robustness can be decomposed as

S@HE) = (Ear [ ee @)1B])

Uar¢1¢ 2

= 0¢,p (\1 +

2
He,e

fh'near(mq W) = GT(@
fmlp(m, W) = G.T (J’(W;[:)

—

varg,e = Varzwp, [[|[76()ll2 - [| /o ()[l2]
Co-correlaton v\ | b e

vy & (Exnp, || Toow(@)|13) 1 N Eanrp, [|176(@)l2 - 1T (@) 2]
T (Benr (17613 - 1o ()13])

(=

__________________________________________

» Regard the neural network as function composition L !
» The proof is straight forward
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On Dynamics of Co-Correlation Robustness Decomposition
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= Empirically, co-correlation is more influential
= We focus on the co-correlation

UNIVERSITY OF

EXETER




On Dynamics of Co-Correlation Linear Model

Assumption 5.1. We assume that each element w; ; in the weight matrix W (0) € R™*? at ini-
tialization follows the Gaussian distribution N (0, ﬁ), with ¢ > 0. Additionally, each element

a,,r € [m] in @ is randomly selected from the set { ———, —L-}, and fixed during training. * 0,w iNncrease during the initial
Assumption 5.2. We assume that for each (x;,y;) € D,i € [n], x; is L, norm bounded such that Sta:g es and become saturated
||l;||2 = 1 foralli € [n]. to its later stages.

* The speed of the accumulation
Theorem 5.3 (Dynamics of the Co-correlation for Linear Model). Given the linear model defined in f P .. | | q
Equation and training dataset D = {(x;,y;)}1,. Assume that assumptions|5.1|and 5.2 hold for Of @qw IS Inversely related to

W and a. The gradient descent applied to the weights results in the dynamics of the co-correlation [|W (t) I 2
being expressed as:

ba,w (1) = nC(t)0aw, (18)
and with high probability, r
t ~ =
t 1
0(1)227”%“;((;)”293()( (‘U(f)TG)2>+O(—) (19) ;= --------5 il
2 ro |
1 — L

where the v(t) is the dominate eigenvector for W (t)W ()T | (1) z; [yz 9 (u, (t))] T
1= 1
When m is sufficiently large, and during the initial steps of the optimization process, (7),T € [t] e o !

are quite similar to each other in terms of cosine similarity, implying an acute angle to each other,
which leads to 3.\ _, Z(T)T&(t) > 0. As a result, we can conclude that C(t) > 0.
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On Dynamics of Co-Correlation 2-Layer MLP

Assumption 5.4. The derivative of the activation function ¢’(z) in non-linear neural networks is
bounded by M. In other words, we have |o’(x)| < M.

Theorem 5.5. (Dynamics of the Co-correlation for MLP) Given the MLP defined in Equation * The dyn amics for Qa,gow 1S the
with training dataset D = {(x;,yi)}I—,, * € X such that x ~ Pg. Assume that Assumptionand same to o

hold for W and a, and Assumption|5.4|holds for the activation function. we have aw )

* The speed of the accumulation

fa,cow (1) = 1C (1) ¢a,cow (1) of 040.w IS inversely related to
With high probability, ID@®OW ()l

2 B BT fo( ) o))

and v(t) denotes the dominant eigenvector for W ()W ()T, with &I is defined in Equation (21).
Similar to the Theorem|5.3) when m is sufficiently large, and during the initial steps of the optimization
where the error-weighted inputs L (1), T € [t] do not significantly fluctuate, we have that C(t) > 0.

Serve as similar
purpose of X(t)
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Experiments 2-Layer MLP
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Experiments ResNets
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Divide the ResNet50 and WRN in 2 ways
w/o specific weight initialization
On CIFAR10 with Adam optimizer
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Experiments
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Different behavior for wide and narrow MLPs
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Difference in behavior between wider
and narrower neural networks
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Conclusion

0 By quantifying the interactions between layers, we found that it
not only fails to collaborate against adversarial perturbations but
may even hinder resistance to them during gradient descent.

U Wider MLPs exhibit more resistance to increased co-correlation
and, therefore, are more adversarial robust.

O Future research can expand upon this by examining the effects of
increased network depth and more sophisticated structures on the
observed phenomena.
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