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Motivation

Whether layers in neural networks collaborate to 

strengthen adversarial robustness during gradient 

descent?

Input OutputHidden Layers

Adversarial Example

𝑥 + 𝛿

Misled output

ℎ 𝑥 + 𝛿 ≠ ℎ 𝑥 = 𝑦𝑙𝑎𝑏𝑒𝑙



Problem Setting

Loss function

Sigmoid function

Prediction

Neural Networks

Activation function

Outputs

▪ Binary classification

▪ Training Set



Measure Adversarial Risk by Dirichlet Energy

▪ The proof is based on 1st

order Taylor’s expansion 



Measure Adversarial Risk by Dirichlet Energy

▪ 2-Layer MLPs with width from 24 to 213

▪ Initialize the weight matrix 𝒘 𝒊,𝒋 ∼ 𝑵 𝟎,
𝟏

𝒎𝟏+𝟐𝒒

▪ Let 𝒒 change from −𝟎. 𝟏𝟓 to 𝟎. 𝟐𝟓
▪ Dirichlet Energy of 𝒇 can be a good representation

▪ It can measure individual layers therefore the correlations  



On Dynamics of Co-Correlation 

▪ Regard the neural network as function composition

▪ The proof is straight forward

Robustness Decomposition

Co-correlation



On Dynamics of Co-Correlation Robustness Decomposition

▪ Empirically, co-correlation is more influential

▪ We focus on the co-correlation



On Dynamics of Co-Correlation 

▪ 𝝔𝒂,𝑾 increase during the initial 

stages and become saturated 

to its later stages.

▪ The speed of the accumulation 

of 𝝔𝒂,𝑾 is inversely related to 

𝑾 𝒕 𝟐

Linear Model



On Dynamics of Co-Correlation 

▪ The dynamics for 𝝔𝒂,𝝈∘𝑾 is the 

same to 𝝔𝒂,𝑾
▪ The speed of the accumulation 

of 𝝔𝒂,𝝈∘𝑾 is inversely related to 

𝑫(𝒕)𝑾 𝒕 𝟐

2-Layer MLP

Serve as similar 

purpose of ෥𝒙(𝒕)



Experiments 2-Layer MLP

▪ The upward trend is true for all 2-Layer MLPs 

▪ The theorem is quite tight on 𝒒

Different width

Different weight initialization parameter 𝒒



Experiments ResNets

▪ Divide the ResNet50 and WRN in 2 ways

▪ w/o specific weight initialization 

▪ On CIFAR10 with Adam optimizer
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▪ Difference in behavior between wider 

and narrower neural networks

Experiments Different behavior for wide and narrow MLPs



Conclusion

❑ By quantifying the interactions between layers, we found that it 

not only fails to collaborate against adversarial perturbations but 

may even hinder resistance to them during gradient descent.

❑ Wider MLPs exhibit more resistance to increased co-correlation 

and, therefore, are more adversarial robust.

❑ Future research can expand upon this by examining the effects of 

increased network depth and more sophisticated structures on the 

observed phenomena. 
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