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\ Introduction

\ Implicit Neural Representations (INRs) have gained popularity due to their ability to encode natural
signals in neural networks weights

\ By modeling the signal as a prediction task from some coordinate system to the signal values

\ A popular choice for the network is a fully connected network (MLP)
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Image from “Adversarial Generation of Continuous Images* (Skorokhodov et al., 2020)




\ Motivation

\ INRs have many advantages over discrete representations, and allow for interesting applications

\ However, their black-box nature presents disadvantages

Scales gracefully
compared to grid
representations

Hard to edit the
encoded signal

Can be sampled at
arbitrary Interpretability
resolutions/views

Unified

representation for Training complexity
various signals




\ Goal

\ We focus on the basic signal editing operation of cropping

\ We wish to remove parts of the encoded signal, with a proportional decrease of INR weights

\ Without retraining/finetuning

\ Without compromising on encoding quality




\ Partitioning the Signal

\ We begin by dividing the input signal space

\ Each dimension is splitinto C; equally sized partitions, resulting in [T/, C; partitions
\ Separate weights will be dedicated for each partition

\ The granularity of partitioning will determine the detail of which we crop the INR




\ A Straightforward Approach

\ Assigning separate weights to different partitions by training a compact INR-per-partition

\' Was done by KiloNeRF and related methods

\ Allowed for significant speed benefit, both in terms of training and inference

Image from: KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs (Reiser et al., 2021)




\ A Straightforward Approach

\ Assigning separate weights by training a compact INR-per-partition

\' Was done by KiloNeRF and related methods

\ Allowed for significant speed benefit, both in terms of training and inference

Image from: KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs (Reiser et al., 2021)

\ Cropping can be achieved by removing specific INRs




\ Downsides to the Straightforward Approach

\ Compact local INRs lack global context

\ Canresult in artifacts, especially noticeable along edges

\ In KiloNeRF, solved using knowledge distillation

\ By sampling novel viewpoints

\ Requires training a full INR

(a) Without Distillation (b) With Distillation

Image from: KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny
MLPs (Reiser et al., 2021)
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\ Our Approach

\' Anovel INR architecture, termed Local-Global INRs

\ Based on combining both local and global context learning

\ Alocal sub-network for each partition

\ Aglobal sub-network for the entire signal, used to augment the local features with global information

\ The Local-Global architecture can be applied to most baseline MLP-based INRs

\ We focus on SIREN for its popularity
\ Additionally, we explore INCODE, a SOTA INR




Local-Global Architecture

(b) Local Sub-Networks
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\ Cropping a Local-Global INR

h 4

> (Rﬂ, Gl]r Bﬂ)

-

_.D_+ (R]_, Glr Bl)

| |:| = SIREN Layer
1

|

|

1

I |
I=Mer O t '
ge Operator I

! I
|

|

1
- — — , = Input Batch
(a) Global Sub-Network 1 Po.P1) P

\ Global sub-network parameters (+ merge operator) should encompass a small part of the overall architecture

\ 5-15% is sufficient to achieve good quality reconstruction




\ Cropping a Local-Global INR

\ Images
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\ Faster and Better Convergence

\ Local-Global INRs easily surpass an INR-per-Partition approach in terms of encoding quality

\' And even improve upon the baseline INR itself

\ Due to the local-subnetworks, Local-Global INRs achieve faster training/inference




Image Encoding

SIREN-per-Partition

Local-Global SIREN

SIREN

Initialization 250 Iterations 500 Iterations 750 Iterations 1000 Iterations




\ Image Encoding

\ Quantitative results on a DIV2K subset

Method Fartition s5iM+ PSNR (dB) 1

SIREN-per-Partition (16, 16) 0.957 31.73 £0.63
SIREN-per-Partition Auto  0.955 31.90 £ 0.64

Local-Global SIREN (16, 16) 0.968 33.94 + 0.64
Local-Global SIREN  Auto  0.971 34.13 +0.59

SIREN - 0.966 33.57 £0.65

Table 1. Mean encoding results on 25 DIV2K images using five
random seeds per image. Automatic partitioning uses partition
factors 11 < (; < 16 to ensure 32 x 32 pixel partitions.




\ Video Encoding

A 12 second RGB cat video (512 x 512, 300 frames)

Using partition factors C, = 5,C; = 8,C, = 8

Sub-sampling a part of the pixels in each training iteration

\ Our method requires less memory, allowing us to increase the number of sampled pixels

Table 2: Mean video encoding results, using
10 random seeds. (*) next to method stands for
sampling 2 - 10~2% of pixels in each iteration.
SPP, LGS stand for SIREN-per-Parition and
Local-Global SIREN, respectively.

Time

Method SSIMT PSNR(dB) T

SPP 0.826 29.58 £0.02
| LGS (ours) 0.854 30.28 + 0.05 |
SIREN 0.815 29.71 £0.09
SPP (*) 0.854 30.83 £ 0.01 i_cal—Glnbal SIREN (*)
| LGS (*) (ours) 0.888 31.91 + 0.02 |

Figure 6: Three frames of an encoded video. PSNR

is at the top left of each frame.



\ Audio Encoding

\ Using partition factor C, = 32

Table 11: Audio encoding results after 1k training iterations. Averaged on 10 seeds.
Audio Clip Method Cy MSE(-10=)] PSNR(dB)t
SIREN-per-Partition 32 12 39.26 + 0.30

Bach (7s) | Local-Global SIREN (oursy 32 3 45.18 + 0.99 |
SIREN - 10 39.94 + 0.75
SIREN-per-Partition 32 75 31.24 £ 0.19

Counting (12s) | Local-Global SIREN (ours) 32 48 33.18 +0.34 |
SIREN - 62 32.07 £0.32

Local-Global SIREN

Figure 5: Encoded Bach audio clips. Mean
PSNR values using 10 random seeds are on
the top left of each figure.




\ 3D Shape Encoding

SIREN-per-Partition Local-Global SIREN
IoU: 0.9920

\ Avoxel grid of size 512 X 512 x 512

\ Using partition factors C, = 5,C; = 8,C, = 8
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\ Partitioning Effects

Larger Partition o More Local Sub- Less Neuron
Smaller Partitions -
Factors networks Interconnectivity

Table 3: Effect of partitioning on latency and accuracy. Results averaged on 10 seeds.

. Partition MSE | Train |
Signal Model Factors  (.10—%) SSIM{+ PSNR (dB) 1 Time (s)
2,2) 112 0946 3259+052 74
(4, 4) 120 0946 32.10£047 40
Image e opal (8, 8) 135 0942 3229+042 26
512 x 512 (16.16) 153 0934  3200+039 22
(32.32) 190 0917 3151+028 15
SIREN - 184 0914 31.17+068 34
5,4,4) 328 0862 3095+0.07 | 386
Video  gedtOlobal 58 8) 347 0854 30282005 | 284
300 x 512 x 512 (5,16,16) 418 0834 29.52+003 | 244
SIREN i 434 0815 2971+£0.09 | 2354




\ Local-Global INCODE

\' INCODE is a SOTA INR, which demonstrated improved performance on various downstream tasks
\ We apply our method to INCODE, resulting in a Local-Global INCODE

\ We recreate three downstream tasks for the original paper, and show how Local-Global INCODE improved
downstream performance
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Figure 8: Local-Global (LG) INCODE applied to downstream tasks. Top-left: 4x image super-
resolution, top-right: CT reconstruction, bottom: image denoising. Mean PSNR and SSIM values
across 10 seeds are displayed in the top-left and top-right corners of each frame, respectively.




\ Conclusions

\ Local-Global INRs seamlessly support cropping with a proportional weight decrease
\ No retraining needed

\ Eliminating the need for a pretraining step as in other methods

\ Superior encoding quality and training speeds

\ Adjustable partitioning allows for a balance between latency and accuracy

\ More experiments in the paper, including extending a previously encoded signal by adding novel local sub-

networks
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