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Research Background

« Contradiction between privacy and robustness

v' SecAgg allows the server to obtain the sum of gradients without inspecting individual user
updates

v' Most defense strategies against poisoning attack require the server to access individual
local updates to detect the attackers

e Contributions

v We propose a federated learning framework that overcomes privacy and robustness issues with
reduced communication cost, especially for high-dimensional models.

v To protect the privacy of local gradients, we propose a novel dot product aggregation protocol.

v" Our framework guarantees the secrecy and integrity of secret shares for a server-mediated
network model using encryption and signature techniques.



Design Goals

* Privacy
v' The server learns only the aggregation weights and global gradients.

v Leverage secret sharing-based protocol to ensure security.

 Robustness
v" The model accuracy should be robust against model poisonous attack

v' Compute the similarity between client update and server update

- Efficiency

v" Our framework should maintain computation and communication efficiency even if it is operated
on high dimensional vectors

v' Employ Packed Shamir Secret Sharing to represent multiple secrets by a single polynomial
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Dot Product Aggregation Protocol

calculating cosine similarity and gradient norm.

[

Server update: g, = (1,2, -2,4) ]

s? =101 s =

s? =159 s; =161 s3=174 s0=6

N

Packed Shamir secretsharing

Naive packed SSS:
Directly send local shares

|

Server reconstructs partial dot product
90 © g; = (380,0)

Directly applying packed secret sharing may increase the risk of information leakage when

Our proposed protocol ensures that only the single value of dot product is released to the server.

[ User update: g; = (3,4,0,0)
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Comparison with Existing Frameworks

Robustness against ~ Privacy Protection ~ Collusion threshold

.. . : .. MPC techniques

malicious users against server during model training
FedAvg Yes No / /
Bulyan Yes No / /
Trim-mean Yes No / /
KRUM Yes No / /
Central DP Yes No / /
Local DP Not effective Yes / /
RFA No Yes / /
PEFL Yes Yes 1 HE (Paillier)
PBFL Yes Yes 1 HE (CKKS)
ShieldFL Yes Yes 1 HE (Paillier)
SecureFL Yes Yes 1 MPC & HE (BFV)
RoFL Yes Yes O(N) ZKP
ELSA Yes Yes 1 MPC
BREA Yes Yes O(N) Secret sharing
RFLPA Yes Yes O(N) Secret sharing

Compared with existing methods that achieve the robust and privacy goals, RFLPA:
» Get rid of the assumption of two non-colluding parties;
+ Mitigate the heavy computation overhead caused by HE and ZKP methods. o\




Efficiency Analysis

« Communication complexity of our protocol reduces from O(MN + N) to O(M + N).
- The server-side computation overhead is reducedto O((M + N)log?N loglogN).

RFLPA BERA
Computation Communication Computation Communication

Server  O((M + N)log® Nloglog N) O((M + N)N) O((N? 4+ MN)log? NloglogN) O(MN 4 N?)
User O((M + N?)log? N) O((M + N)) O(MN log® N + M N?) O(MN + N)

» QOur framework reduces the communication and computation cost by over 75% compared
with BREA.

+»-RFLPA o BREA

Communication Cost by Client Size Communication Cost by Model Size Per-user Computation Cost Server Computation Cost
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Accuracy Analysis

RFLPA demonstrates more stable performance for up to 30% adversaries compared to other baselines.

Gradient Manipulation Label Flipping
Proportion of Attackers No 10% 20% 30% No 10% 20% 30%
MNIST 0.98 +0.0 0.46 0.1 0.40 £0.1 0.32 +£0.0 0.98 +0.0 0.96 +0.0 0.92 +0.0 0.824+0.0
FedAvg F-MNIST 0.88 +0.0 0.55 £0.0 0.51 £0.0 0.45 +0.1 0.88 £0.0 0.82 +£0.0 0.73 £0.0 0.69 0.0
CIFAR-10 0.76 £0.3 0.14 +0.2 0.13 +0.8 0.13 +0.2 0.76 0.3 0.72 +1.1 0.68 £2.7 0.59 £0.8
MNIST 0.98 +£0.0 0.92 £+0.0 0.89 £0.0 0.87 £0.0 0.98 0.0 0.91 +0.0 0.90 +£0.0 0.87 +0.0
Bulyan F-MNIST 0.86 £0.0 0.73 £0.0 0.71 £0.1 0.69 £0.0 0.86 £0.0 0.76 £0.0 0.70 £0.1 0.68 £0.0
CIFAR-10 0.77 +£1.0 0.73 +0.8 0.45 +1.2 0.27 £0.6 0.77 +£1.0 0.72 4+0.2 0.62 £1.8 0.40 £0.9
Trim- MNIST 0.98 £0.0 0.95 +0.0 0.93 £0.0 0.91 +0.0 0.98 £0.0 0.95 4+0.0 0.92 +0.0 0.90 +0.0
mean F-MNIST 0.86 £0.0 0.81 +0.0 0.74 £0.0 0.71 £0.0 0.86 £0.0 0.78 £0.0 0.74 £0.0 0.73 £0.0
CIFAR-10 0.76 £1.0 0.57 +2.1 0.51 +1.1 0.47 £2.2 0.76 £1.0 0.71 +1.3 0.68 +£0.7 0.56 +£1.1
MNIST 0.87 £0.1 0.13 +0.0 0.10 £0.0 0.10 £0.0 0.87 £0.1 0.87 0.3 0.83 +1.2 0.77 +£2.1
LDP F-MNIST 0.74 £0.1 0.59 £0.4 0.53 +£1.2 0.12 £0.0 0.74 £0.1 0.63 +£0.5 0.62 £0.2 0.59 £1.2
CIFAR-10 0.14 +0.2 0.14 +0.2 0.12 £0.3 0.12 +0.1 0.14 £0.2 0.14 +0.2 0.14 £+0.3 0.13 +0.1
MNIST 0.96 £0.0 0.96 +0.0 0.95 £0.0 0.94 +0.0 0.96 £0.0 0.96 +0.0 0.95 +0.3 0.91 4+0.2
CDP F-MNIST 0.83 £0.1 0.51 +£0.1 0.41 £0.0 0.34 £0.1 0.83 £0.1 0.81 +£0.5 0.79 £0.0 0.78 £0.7
CIFAR-10 0.71 +£1.2 0.12 4+0.5 0.12 +£0.3 0.12 +0.3 0.71 £1.2 0.68 +0.7 0.66 £1.5 0.63 +£1.3
MNIST 0.94 +£0.0 0.93 +0.0 0.93 £0.0 0.93 £0.0 0.94 +0.0 0.94 +0.0 0.93 +£0.0 0.93 £0.0
BREA F-MNIST 0.84 £0.0 0.83 £0.0 0.82 £0.0 0.81 £0.0 0.84 £0.0 0.84 £0.0 0.82 £0.0 0.81 £0.0
CIFAR-10 0.70 £1.0 0.69 +1.1 0.68 +1.9 0.68 0.7 0.70 £1.0 0.70 +2.2 0.67 £0.9 0.65 £2.7
MNIST 0.96 +0.0 0.96 +£0.0 0.95 +0.0 0.95 +£0.0 0.96 0.0 0.96 +0.0 0.95 +0.0 0.95 +0.0
RFLPA F-MNIST 0.84 +0.0 0.84 +0.0 0.83 +£0.0 0.82 +0.0 0.84 £0.0 0.83 0.0 0.83 +0.0 0.82 +0.0
CIFAR-10 0.74 +£2.3 0.70 1.8 0.70 £1.9 0.69 +1.8 0.74 £2.3 0.71 £1.7 0.70 +£1.6 0.69+0 ¢
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