BEYOND OPTIMISM:
EXPLORATION WITH

SIMONE PARISI LA
ALIREZA KAZEMIPOUR > z

N R
MICHAEL BOWLING

38TH CONFERENCE ON NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2024)



OPTIMISM WORKS WHEN
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m Small and easy-to-find reward to the left.
m Large and hard-to-find reward to the far right.

m Optimistic algorithms (e.g., Q-Learning with optimistic
initialization) would solve this problem easily.




IF REWARDS ARE PARTIALLY OBSERVABLE
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m Coin rewards are observable only if the agent pushes the button
first.

m But the agent will also receives negative rewards in the meantime.
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m Coin rewards are observable only if the agent pushes the button
first.

m But the agent will also receives negative rewards in the meantime.

m Coin rewards do exist even when not observed, so the optimal
policy is to ignore the button and collect the large coin ...

m ... but the agent must push the button first (suboptimal action) to
learn the optimal policy!
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first.

m But the agent will also receives negative rewards in the meantime.

m Coin rewards do exist even when not observed, so the optimal
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m ... but the agent must push the button first (suboptimal action) to
learn the optimal policy!

Optimism + Suboptimal Actions




MONITORED MDPs

Environment

Monitored MDP

m The monitor is a separate MDP “on the top” of the environment.
m The goal is to maximize > o, ~H(rf + rM) ...

m ... but the agent observes proxy rewards £ ~ M(rE,sM, al")
instead of true rewards rf ...

m ... and sometimes 7f = NaN!

[“Monitored Markov Decision Processes”, AAMAS 2024]




EXPLORATION-EXPLOITATION

1 (s9,a%) = argmin, o Ny(s,a) // goal: the least-visited state-action pair
2 By = logt/N,(s°, a%) // how much did we visit it?
3 if B; > [ then return p(a | s,5%,a°) // explore: follow goal-conditioned policy
4 else return arg max, Q(s, a) // exploit: follow the greedy policy
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Exploration does not depend on the reward observability!



RESULTS (EXPECTED RETURN)
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